IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Fixed-B Asymptotics For The Studentized Mean From Time Series With Short, Long, Or Negative Memory

  • McElroy, Tucker
  • Politis, Dimitris N.

This paper considers the problem of variance estimation for the sample mean in the context of long memory and negative memory time series dynamics, adopting the fixed-bandwidth approach now popular in the econometrics literature. The distribution theory generalizes the short memory results of Kiefer and Vogelsang (2005, Econometric Theory 21, 1130–1164). In particular, our results highlight the dependence on the kernel (we include flat-top kernels), whether or not the kernel is nonzero at the boundary, and, most important, whether or not the process is short memory. Simulation studies support the importance of accounting for memory in the construction of confidence intervals for the mean.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://journals.cambridge.org/abstract_S0266466611000405
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 28 (2012)
Issue (Month): 02 (April)
Pages: 471-481

as
in new window

Handle: RePEc:cup:etheor:v:28:y:2012:i:02:p:471-481_00
Contact details of provider: Postal: Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK
Web page: http://journals.cambridge.org/jid_ECT
Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory for Heteroskedasticity-Autocorrelation Robust Tests," Working Papers 05-08, Cornell University, Center for Analytic Economics.
  2. Kiefer, Nicholas M. & Bunzel, Helle & Vogelsang, Timothy & Vogelsang, Timothy & Bunzel, Helle, 2000. "Simple Robust Testing of Regression Hypotheses," Staff General Research Papers 1832, Iowa State University, Department of Economics.
  3. Hurvich, Clifford M., 2002. "Multistep forecasting of long memory series using fractional exponential models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 167-179.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:28:y:2012:i:02:p:471-481_00. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.