IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v416y2020ics0304380019304223.html
   My bibliography  Save this article

Mitigating bioenergy-driven biodiversity decline: A modelling approach with the European brown hare

Author

Listed:
  • Langhammer, Maria
  • Grimm, Volker

Abstract

The cultivation of energy crops leads to direct and indirect land use changes that impair the biodiversity of the agricultural landscape. In our study, we analyse the effects of mitigation measures on the European brown hare (Lepus europaeus), which is directly affected by ongoing land use change and has experienced widespread decline throughout Europe since the 1960s. Therefore, we developed a spatially explicit and individual-based ecological model to study the effects of different landscape configurations and compositions on hare population development. As an input, we used two 4 × 4 km large model landscapes, which were generated by a landscape generator based on real field sizes and crop proportions and differed in average field size and crop composition. The crops grown annually are evaluated in terms of forage suitability, breeding suitability and crop richness for the hare. In six mitigation scenarios, we investigated the effects of a 10 % increase in the following measures: (1) mixed silphie, (2) miscanthus, (3) grass-clover ley, (4) alfalfa, (5) set-aside, and (6) general crop richness. All mitigation measures had significant effects on hare population development. Compared to the base scenario, the relative change in hare abundance ranged from a factor of 0.56 in the grass-clover ley scenario to -0.16 in the miscanthus scenario. The mitigation measures of mixed silphie, grass-clover ley and increased crop richness led to distinct increases in hare abundance in both landscapes (> 0.3). The results show that both landscape configuration and composition have a significant effect on hare population development, which responds particularly strongly to compositional changes. The increase in crop diversity, e.g., through the cultivation of alternative energy crops such as mixed silphie and grass-clover ley, proves to be beneficial for the brown hare.

Suggested Citation

  • Langhammer, Maria & Grimm, Volker, 2020. "Mitigating bioenergy-driven biodiversity decline: A modelling approach with the European brown hare," Ecological Modelling, Elsevier, vol. 416(C).
  • Handle: RePEc:eee:ecomod:v:416:y:2020:i:c:s0304380019304223
    DOI: 10.1016/j.ecolmodel.2019.108914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019304223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    2. Alexander Gocht & Pavel Ciaian & Maria Bielza & Jean-Michel Terres & Norbert Röder & Mihaly Himics & Guna Salputra, 2017. "EU-wide Economic and Environmental Impacts of CAP Greening with High Spatial and Farm-type Detail," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(3), pages 651-681, September.
    3. Scherer, Cédric & Jeltsch, Florian & Grimm, Volker & Blaum, Niels, 2016. "Merging trait-based and individual-based modelling: An animal functional type approach to explore the responses of birds to climatic and land use changes in semi-arid African savannas," Ecological Modelling, Elsevier, vol. 326(C), pages 75-89.
    4. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    5. Langhammer, Maria & Thober, Jule & Lange, Martin & Frank, Karin & Grimm, Volker, 2019. "Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions," Ecological Modelling, Elsevier, vol. 393(C), pages 135-151.
    6. Carter, Neil & Levin, Simon & Barlow, Adam & Grimm, Volker, 2015. "Modeling tiger population and territory dynamics using an agent-based approach," Ecological Modelling, Elsevier, vol. 312(C), pages 347-362.
    7. Nabe-Nielsen, Jacob & Sibly, Richard M. & Tougaard, Jakob & Teilmann, Jonas & Sveegaard, Signe, 2014. "Effects of noise and by-catch on a Danish harbour porpoise population," Ecological Modelling, Elsevier, vol. 272(C), pages 242-251.
    8. Koçar, Günnur & Civaş, Nilgün, 2013. "An overview of biofuels from energy crops: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 900-916.
    9. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumitru Peni & Mariusz Jerzy Stolarski & Anna Bordiean & Michał Krzyżaniak & Marcin Dębowski, 2020. "Silphium perfoliatum —A Herbaceous Crop with Increased Interest in Recent Years for Multi-Purpose Use," Agriculture, MDPI, vol. 10(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    2. Vik, Jostein, 2020. "The agricultural policy trilemma: On the wicked nature of agricultural policy making," Land Use Policy, Elsevier, vol. 99(C).
    3. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    4. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    5. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    6. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    7. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2012. "Der Markt für Bioenergie 2012," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(Supplemen), pages 1-20, February.
    8. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2011. "Der Markt für Bioenergie 2012," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61.
    9. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    10. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    11. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    12. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    13. Bose, Arnab & Ramji, Aditya & Singh, Jarnail & Dholakia, Dhairya, 2012. "A case study for sustainable development action using financial gradients," Energy Policy, Elsevier, vol. 47(S1), pages 79-86.
    14. Xiao Lyu & Yanan Wang & Yuntai Zhao & Shandong Niu, 2022. "Spatio‐temporal pattern and mechanism of coordinated development of “population–land–industry–money” in rural areas of three provinces in Northeast China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1333-1361, September.
    15. Till Hermanns & Katharina Helming & Katharina Schmidt & Hannes Jochen König & Heiko Faust, 2015. "Stakeholder Strategies for Sustainability Impact Assessment of Land Use Scenarios: Analytical Framework and Identifying Land Use Claims," Land, MDPI, vol. 4(3), pages 1-29, September.
    16. Lisa Biber-Freudenberger & Amit Kumar Basukala & Martin Bruckner & Jan Börner, 2018. "Sustainability Performance of National Bio-Economies," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    17. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    18. Ruci Wang & Ahmed Derdouri & Yuji Murayama, 2018. "Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    19. Carlo Carraro & Marinella Davide & Valeria Barbi & Giacomo Marangoni, 2013. "Science adva ncements, policy immobility: the two fac es of climate (in)action," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 5-29.
    20. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:416:y:2020:i:c:s0304380019304223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.