IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v207y2007i2p304-318.html
   My bibliography  Save this article

Random forests as a tool for ecohydrological distribution modelling

Author

Listed:
  • Peters, Jan
  • Baets, Bernard De
  • Verhoest, Niko E.C.
  • Samson, Roeland
  • Degroeve, Sven
  • Becker, Piet De
  • Huybrechts, Willy

Abstract

An important issue in ecohydrological research is distribution modelling, aiming at the prediction of species or vegetation type occurrence on the basis of empirical relations with hydrological or hydrogeochemical habitat conditions. In this study, two statistical techniques are evaluated: (i) the widely used multiple logistic regression technique in the generalized linear modelling framework, and (ii) a recently developed machine learning technique called ‘random forests’. The latter is an ensemble learning technique that generates many classification trees and aggregates the individual results. The two different techniques are used to develop distribution models to predict the vegetation type occurrence of 11 groundwater-dependent vegetation types in Belgian lowland valley ecosystems based on spatially distributed measurements of environmental conditions. The spatially distributed data set under investigation consists of 1705 grid cells covering an area of 47.32ha. After model construction and calibration, both models are applied to independent test data sets using two-fold cross-validation and resulting probabilities of occurrence are used to predict vegetation type distributions within the study area. Predicted vegetation types are compared with observations, and the McNemar test indicates an overall better performance of the random forest model at the 0.001 significance level. Comparison of the modelling results for each individual vegetation type separately by means of the F-measure, which combines precision and recall, also reveals better predictions by the random forest model. Inspection of the probabilities of occurrence of the different vegetation types for each grid cell demonstrates that correct predictions in central areas of homogeneous vegetation sites are based on high probabilities, whereas the confidence decreases towards the margins of these areas. Threshold-independent evaluation of the model accuracy by means of the area under the receiver operating characteristic (ROC) curves confirms good performances of both models, but with higher values for the random forest model. Therefore, the incorporation of the random forest technique in distribution models has the ability to lead to better model performances.

Suggested Citation

  • Peters, Jan & Baets, Bernard De & Verhoest, Niko E.C. & Samson, Roeland & Degroeve, Sven & Becker, Piet De & Huybrechts, Willy, 2007. "Random forests as a tool for ecohydrological distribution modelling," Ecological Modelling, Elsevier, vol. 207(2), pages 304-318.
  • Handle: RePEc:eee:ecomod:v:207:y:2007:i:2:p:304-318
    DOI: 10.1016/j.ecolmodel.2007.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007002931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mitsch, William J. & Gosselink, James G., 2000. "The value of wetlands: importance of scale and landscape setting," Ecological Economics, Elsevier, vol. 35(1), pages 25-33, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun-Mao Liao & Ming-Jui Chang & Luh-Maan Chang, 2020. "Prediction of Air-Conditioning Energy Consumption in R&D Building Using Multiple Machine Learning Techniques," Energies, MDPI, vol. 13(7), pages 1-22, April.
    2. Peters, Jan & Verhoest, Niko E.C. & Samson, Roeland & Van Meirvenne, Marc & Cockx, Liesbet & De Baets, Bernard, 2009. "Uncertainty propagation in vegetation distribution models based on ensemble classifiers," Ecological Modelling, Elsevier, vol. 220(6), pages 791-804.
    3. Vanesa Mateo-Pérez & Marina Corral-Bobadilla & Francisco Ortega-Fernández & Vicente Rodríguez-Montequín, 2021. "Determination of Water Depth in Ports Using Satellite Data Based on Machine Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-22, April.
    4. Shangkun Deng & Chenguang Wang & Zhe Fu & Mingyue Wang, 2021. "An Intelligent System for Insider Trading Identification in Chinese Security Market," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 593-616, February.
    5. Yikalo H. Araya & Tarmo K. Remmel & Ajith H. Perera, 2016. "What governs the presence of residual vegetation in boreal wildfires?," Journal of Geographical Systems, Springer, vol. 18(2), pages 159-181, April.
    6. Saeid SHABANI, 2017. "Modelling and mapping of soil damage caused by harvesting in Caspian forests (Iran) using CART and RF data mining techniques," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(9), pages 425-432.
    7. Shuaiwei Shi & Meiyi Hou & Zifan Gu & Ce Jiang & Weiqiang Zhang & Mengyang Hou & Chenxi Li & Zenglei Xi, 2022. "Estimation of Heavy Metal Content in Soil Based on Machine Learning Models," Land, MDPI, vol. 11(7), pages 1-19, July.
    8. Mehrdad Jeihouni & Ara Toomanian & Ali Mansourian, 2020. "Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: a Novel Hybrid Use of Data Mining and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 139-154, January.
    9. Marie-Hélène Roy & Denis Larocque, 2012. "Robustness of random forests for regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 993-1006, December.
    10. Li, Yi & Zou, Changfu & Berecibar, Maitane & Nanini-Maury, Elise & Chan, Jonathan C.-W. & van den Bossche, Peter & Van Mierlo, Joeri & Omar, Noshin, 2018. "Random forest regression for online capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 232(C), pages 197-210.
    11. Sarah Mittlefehldt & Erin Bunting & Emily Huff & Joseph Welsh & Robert Goodwin, 2021. "New Methods for Assessing Sustainability of Wood-Burning Energy Facilities: Combining Historical and Spatial Approaches," Energies, MDPI, vol. 14(23), pages 1-18, November.
    12. Bemah Ibrahim & Isaac Ahenkorah & Anthony Ewusi, 2022. "Explainable Risk Assessment of Rockbolts’ Failure in Underground Coal Mines Based on Categorical Gradient Boosting and SHapley Additive exPlanations (SHAP)," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    13. Yeeun Shin & Suyeon Kim & Se-Rin Park & Taewoo Yi & Chulgoo Kim & Sang-Woo Lee & Kyungjin An, 2022. "Identifying Key Environmental Factors for Paulownia coreana Habitats: Implementing National On-Site Survey and Machine Learning Algorithms," Land, MDPI, vol. 11(4), pages 1-16, April.
    14. Dthenifer Cordeiro Santana & Regimar Garcia dos Santos & Pedro Henrique Neves da Silva & Hemerson Pistori & Larissa Pereira Ribeiro Teodoro & Nerison Luis Poersch & Gileno Brito de Azevedo & Glauce Ta, 2023. "Machine Learning Methods for Woody Volume Prediction in Eucalyptus," Sustainability, MDPI, vol. 15(14), pages 1-11, July.
    15. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    16. repec:caa:jnlswr:v:preprint:id:119-2023-swr is not listed on IDEAS
    17. Musaab I. Magzoub & Raj Kiran & Saeed Salehi & Ibnelwaleed A. Hussein & Mustafa S. Nasser, 2021. "Assessing the Relation between Mud Components and Rheology for Loss Circulation Prevention Using Polymeric Gels: A Machine Learning Approach," Energies, MDPI, vol. 14(5), pages 1-19, March.
    18. Jiacheng Niu & Huaizhi Tang & Qi Liu & Feng Cheng & Leina Zhang & Lingling Sang & Yuanfang Huang & Chongyang Shen & Bingbo Gao & Zibing Niu, 2022. "Determinants of Soil Bacterial Diversity in a Black Soil Region in a Large-Scale Area," Land, MDPI, vol. 11(5), pages 1-16, May.
    19. Thomas J. Stohlgren & Peter Ma & Sunil Kumar & Monique Rocca & Jeffrey T. Morisette & Catherine S. Jarnevich & Nate Benson, 2010. "Ensemble Habitat Mapping of Invasive Plant Species," Risk Analysis, John Wiley & Sons, vol. 30(2), pages 224-235, February.
    20. Shahin Nozari & Mohammad Reza Pahlavan-Rad & Colby Brungard & Brandon Heung & Luboš Borůvka, 2024. "Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 19(1), pages 32-49.
    21. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    2. Nisse Goldberg & Russell L. Watkins, 2021. "Spatial comparisons in wetland loss, mitigation, and flood hazards among watersheds in the lower St. Johns River basin, northeastern Florida, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1743-1757, November.
    3. Hermine Vedogbeton & Robert J. Johnston, 2020. "Commodity Consistent Meta-Analysis of Wetland Values: An Illustration for Coastal Marsh Habitat," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 835-865, April.
    4. Scemama, Pierre & Levrel, Harold, 2019. "Influence of the Organization of Actors in the Ecological Outcomes of Investment in Restoration of Biodiversity," Ecological Economics, Elsevier, vol. 157(C), pages 71-79.
    5. Posthumus, H. & Rouquette, J.R. & Morris, J. & Gowing, D.J.G. & Hess, T.M., 2010. "A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England," Ecological Economics, Elsevier, vol. 69(7), pages 1510-1523, May.
    6. Yashna Devi Beeharry & Girish Bekaroo & Chandradeo Bokhoree & Michael Robert Phillips, 2022. "Impacts of sea-level rise on coastal zones of Mauritius: insights following calculation of a coastal vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 27-55, October.
    7. Jiang Li & Qiao Pan & You Peng & Tao Feng & Shaobo Liu & Xiaoxi Cai & Chixing Zhong & Yicheng Yin & Wenbo Lai, 2020. "Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    8. Hyun-Ju Cho & Jin-Hyo Kim & Eun-Jae Lee, 2023. "A Study on the Advancement of Spatial Maps and the Improvement of the Legal System as a Key Tool for Sustainable National Landscape Planning: Case Study of South Korea," Land, MDPI, vol. 12(5), pages 1-20, May.
    9. Natacha LASKOWSKI, 2013. "Optimal allocation of wetlands: Study on conflict between agriculture and fishery," Cahiers du GREThA (2007-2019) 2013-07, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    10. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    11. Fulford, Richard & Yoskowitz, David & Russell, Marc & Dantin, Darrin & Rogers, John, 2016. "Habitat and recreational fishing opportunity in Tampa Bay: Linking ecological and ecosystem services to human beneficiaries," Ecosystem Services, Elsevier, vol. 17(C), pages 64-74.
    12. Soderqvist, Tore & Mitsch, William J. & Turner, R. Kerry, 2000. "Valuation of wetlands in a landscape and institutional perspective," Ecological Economics, Elsevier, vol. 35(1), pages 1-6, October.
    13. Namakando, Namakando, 2020. "Stakeholder perceptions of raw water quality and its management in Fetakgomo and Maruleng municipalities of Limpopo Province," Research Theses 334769, Collaborative Masters Program in Agricultural and Applied Economics.
    14. Aryal, Kishor & Ojha, Bhuwan Raj & Maraseni, Tek, 2021. "Perceived importance and economic valuation of ecosystem services in Ghodaghodi wetland of Nepal," Land Use Policy, Elsevier, vol. 106(C).
    15. Jackson Bunyangha & Agnes. W. N. Muthumbi & Anthony Egeru & Robert Asiimwe & Dunston W. Ulwodi & Nathan. N. Gichuki & Mwanjalolo. J. G. Majaliwa, 2022. "Preferred Attributes for Sustainable Wetland Management in Mpologoma Catchment, Uganda: A Discrete Choice Experiment," Land, MDPI, vol. 11(7), pages 1-18, June.
    16. Dariusz Świerk & Michał Krzyżaniak & Patryk Antoszewski & Adam Choryński, 2022. "Impact of Land Use Type on Macrophyte Occurrence in Ponds in a Changing Climate," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    17. Tianjie Li & Yan Huang & Chaoguang Gu & Fangbo Qiu, 2022. "Application of Geodesign Techniques for Ecological Engineered Landscaping of Urban River Wetlands: A Case Study of Yuhangtang River," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    18. D.C & Nwankwoala & H. O & Okujagu, 2021. "A Review Of Wetlands And Coastal Resources Of The Niger Delta: Potentials, Challenges And Prospects," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 5(1), pages 37-46, March.
    19. Humberto Peraza-Villarreal & Alejandro Casas & Roberto Lindig-Cisneros & Alma Orozco-Segovia, 2019. "The Marceño Agroecosystem: Traditional Maize Production and Wetland Management in Tabasco, Mexico," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    20. Chiara D’Alpaos & Andrea D’Alpaos, 2021. "The Valuation of Ecosystem Services in the Venice Lagoon: A Multicriteria Approach," Sustainability, MDPI, vol. 13(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:207:y:2007:i:2:p:304-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.