IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i5p731-d814334.html
   My bibliography  Save this article

Determinants of Soil Bacterial Diversity in a Black Soil Region in a Large-Scale Area

Author

Listed:
  • Jiacheng Niu

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Huaizhi Tang

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Qi Liu

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Feng Cheng

    (China Land Surveying and Planning Institute, Beijing 100032, China)

  • Leina Zhang

    (China Land Surveying and Planning Institute, Beijing 100032, China)

  • Lingling Sang

    (China Land Surveying and Planning Institute, Beijing 100032, China)

  • Yuanfang Huang

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Chongyang Shen

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Bingbo Gao

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Zibing Niu

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

Abstract

Soils in black soil areas are high in organic matter and rich in nutrients. Soil microorganisms are particularly critical to cultivated land. The objective of this study was to explore the influencing factors of soil bacterial diversity under special regional conditions in a black soil region. In this study, the cultivated land in a black soil area was used as the study area and a random forest was used to map the bacterial abundance in the black soil area based on 1810 sample points. DbMEM analysis was used to quantify the spatial effect of the black soil area and to identify the influencing factors of soil bacterial abundance in the black soil area in combination with soil properties, terrain, and climate. Results of a variation division showed that broad (8.336%), AT (accumulated temperature, 5.520%), and pH (4.184%) were the main factors affecting soil bacterial diversity. The broad effect was more significant in the spatial effect, which may be related to the local landscape configuration. Overall, our research showed that the influencing factors of soil bacteria will be affected by regional characteristics.

Suggested Citation

  • Jiacheng Niu & Huaizhi Tang & Qi Liu & Feng Cheng & Leina Zhang & Lingling Sang & Yuanfang Huang & Chongyang Shen & Bingbo Gao & Zibing Niu, 2022. "Determinants of Soil Bacterial Diversity in a Black Soil Region in a Large-Scale Area," Land, MDPI, vol. 11(5), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:731-:d:814334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/5/731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/5/731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peters, Jan & Baets, Bernard De & Verhoest, Niko E.C. & Samson, Roeland & Degroeve, Sven & Becker, Piet De & Huybrechts, Willy, 2007. "Random forests as a tool for ecohydrological distribution modelling," Ecological Modelling, Elsevier, vol. 207(2), pages 304-318.
    2. Ye, Sijing & Song, Changqing & Shen, Shi & Gao, Peichao & Cheng, Changxiu & Cheng, Feng & Wan, Changjun & Zhu, Dehai, 2020. "Spatial pattern of arable land-use intensity in China," Land Use Policy, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaizhi Tang & Jiacheng Niu & Zibing Niu & Qi Liu & Yuanfang Huang & Wenju Yun & Chongyang Shen & Zejun Huo, 2023. "System Cognition and Analytic Technology of Cultivated Land Quality from a Data Perspective," Land, MDPI, vol. 12(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    2. Yikalo H. Araya & Tarmo K. Remmel & Ajith H. Perera, 2016. "What governs the presence of residual vegetation in boreal wildfires?," Journal of Geographical Systems, Springer, vol. 18(2), pages 159-181, April.
    3. Sarah Mittlefehldt & Erin Bunting & Emily Huff & Joseph Welsh & Robert Goodwin, 2021. "New Methods for Assessing Sustainability of Wood-Burning Energy Facilities: Combining Historical and Spatial Approaches," Energies, MDPI, vol. 14(23), pages 1-18, November.
    4. Bemah Ibrahim & Isaac Ahenkorah & Anthony Ewusi, 2022. "Explainable Risk Assessment of Rockbolts’ Failure in Underground Coal Mines Based on Categorical Gradient Boosting and SHapley Additive exPlanations (SHAP)," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    5. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    6. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    7. Vanesa Mateo-Pérez & Marina Corral-Bobadilla & Francisco Ortega-Fernández & Vicente Rodríguez-Montequín, 2021. "Determination of Water Depth in Ports Using Satellite Data Based on Machine Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-22, April.
    8. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    9. Ke, Xinli & Chen, Jing & Zuo, Chengchao & Wang, Xiaoqian, 2024. "The cropland intensive utilisation transition in China: An induced factor substitution perspective," Land Use Policy, Elsevier, vol. 141(C).
    10. Long Kang & Rui Zhao & Kening Wu & Zhe Feng & Huafu Zhao & Sicheng Zhang, 2023. "Distribution Characteristics and Influencing Factors of Soil Biological Indicators in Typical Farmland Soils," Land, MDPI, vol. 12(4), pages 1-14, March.
    11. Xu, Feng & Chi, Guangqing & Zhang, Zhexi & Yang, Jianxin, 2023. "How does quality regional growth affect land resources dependence in China? Evidence based on spatial Durbin panel models," Resources Policy, Elsevier, vol. 81(C).
    12. Shuang Zhang & Shaobo Liu & Qikang Zhong & Kai Zhu & Hongpeng Fu, 2024. "Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing," Land, MDPI, vol. 13(8), pages 1-24, August.
    13. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Jinyue & Li, Xuyi & Ma, Peng & Sun, Jiawei & Sun, Yongjian & Ma, Jun & Li, Na, 2022. "Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China," Energy, Elsevier, vol. 245(C).
    14. Sijing Ye & Changqing Song & Peichao Gao & Chenyu Liu & Changxiu Cheng, 2022. "Visualizing clustering characteristics of multidimensional arable land quality indexes at the county level in mainland China," Environment and Planning A, , vol. 54(2), pages 222-225, March.
    15. Rui Zhao & Kening Wu & Xiaoliang Li & Nan Gao & Mingming Yu, 2021. "Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    16. repec:plo:pone00:0208400 is not listed on IDEAS
    17. Shandong Niu & Xiao Lyu & Guozheng Gu, 2022. "What Is the Operation Logic of Cultivated Land Protection Policies in China? A Grounded Theory Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    18. Shuaiwei Shi & Meiyi Hou & Zifan Gu & Ce Jiang & Weiqiang Zhang & Mengyang Hou & Chenxi Li & Zenglei Xi, 2022. "Estimation of Heavy Metal Content in Soil Based on Machine Learning Models," Land, MDPI, vol. 11(7), pages 1-19, July.
    19. Xiaoyang Han & Sijing Ye & Shuyi Ren & Changqing Song, 2023. "Using the DTFM Method to Analyse the Degradation Process of Bilateral Trade Relations between China and Australia," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    20. Lai Yao & Jie Zhu & Wei Yang & Dongzhu Zhao & Yong Zhou & Shaoqiu Li & Jiangwen Nie & Lixia Yi & Zhangyong Liu & Bo Zhu, 2024. "Green Manuring with Oilseed Rape ( Brassica napus L.) Mitigates Methane (CH 4 ) and Nitrous Oxide (N 2 O) Emissions in a Rice-Ratooning System in Central China," Agriculture, MDPI, vol. 14(6), pages 1-15, May.
    21. Yeeun Shin & Suyeon Kim & Se-Rin Park & Taewoo Yi & Chulgoo Kim & Sang-Woo Lee & Kyungjin An, 2022. "Identifying Key Environmental Factors for Paulownia coreana Habitats: Implementing National On-Site Survey and Machine Learning Algorithms," Land, MDPI, vol. 11(4), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:731-:d:814334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.