IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v209y2021ics016517652100389x.html
   My bibliography  Save this article

The nowcast revision analysis extended

Author

Listed:
  • Hayashi, Fumio
  • Tachi, Yuta

Abstract

The nowcast revision analysis is about the effect of new observations, data revisions, and parameter changes on a nowcast of a fixed target variable. Previously, only the new-observations effect can be broken down by variable. We provide a method for doing the same for the data-revisions and parameter-revisions effects as well. The method is applied to the COVID-battered U.S. GDP growth from 2020:Q1 to Q2.

Suggested Citation

  • Hayashi, Fumio & Tachi, Yuta, 2021. "The nowcast revision analysis extended," Economics Letters, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:ecolet:v:209:y:2021:i:c:s016517652100389x
    DOI: 10.1016/j.econlet.2021.110112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016517652100389X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2021.110112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    2. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    3. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
    2. Fumio Hayashi & Yuta Tachi, 2023. "Nowcasting Japan’s GDP," Empirical Economics, Springer, vol. 64(4), pages 1699-1735, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    2. Cascaldi-Garcia, Danilo & Ferreira, Thiago R.T. & Giannone, Domenico & Modugno, Michele, 2024. "Back to the present: Learning about the euro area through a now-casting model," International Journal of Forecasting, Elsevier, vol. 40(2), pages 661-686.
    3. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    4. Bańbura, Marta & Belousova, Irina & Bodnár, Katalin & Tóth, Máté Barnabás, 2023. "Nowcasting employment in the euro area," Working Paper Series 2815, European Central Bank.
    5. Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
    6. Lyu, Yifei & Nie, Jun & Yang, Shu-Kuei X., 2021. "Forecasting US economic growth in downturns using cross-country data," Economics Letters, Elsevier, vol. 198(C).
    7. Emilio Blanco & Fiorella Dogliolo & Lorena Garegnani, 2022. "Nowcasting during the Pandemic: Lessons from Argentina," BCRA Working Paper Series 202299, Central Bank of Argentina, Economic Research Department.
    8. Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
    9. Cem Cakmakli & Hamza Demircan, 2020. "Using Survey Information for Improving the Density Nowcasting of US GDP with a Focus on Predictive Performance during Covid-19 Pandemic," Koç University-TUSIAD Economic Research Forum Working Papers 2016, Koc University-TUSIAD Economic Research Forum.
    10. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    11. Alkhareif, Ryadh M. & Barnett, William A., 2020. "Nowcasting Real GDP for Saudi Arabia," MPRA Paper 104278, University Library of Munich, Germany.
    12. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
    13. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    14. Nikoleta Anesti & Ana Beatriz Galvao & Silvia Miranda-Agrippino, 2018. "Uncertain Kingdom: Nowcasting GDP and its Revisions," Discussion Papers 1824, Centre for Macroeconomics (CFM).
    15. Bragoli, Daniela & Modugno, Michele, 2017. "A now-casting model for Canada: Do U.S. variables matter?," International Journal of Forecasting, Elsevier, vol. 33(4), pages 786-800.
    16. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    17. Martin Ellison & Sang Seok Lee & Kevin Hjortshøj O'Rourke, 2024. "The Ends of 27 Big Depressions," American Economic Review, American Economic Association, vol. 114(1), pages 134-168, January.
    18. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    19. Jinjing Li & Yogi Vidyattama & Hai Anh La & Riyana Miranti & Denisa M Sologon, 2020. "The Impact of COVID-19 and Policy Responses on Australian Income Distribution and Poverty," Papers 2009.04037, arXiv.org.
    20. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.

    More about this item

    Keywords

    Nowcast revision analysis; Kalman recursion; Affine function;
    All these keywords.

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:209:y:2021:i:c:s016517652100389x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.