IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v128y2015icp9-13.html
   My bibliography  Save this article

The term structure of implied dividend yields and expected returns

Author

Listed:
  • Bilson, John F.O.
  • Kang, Sang Baum
  • Luo, Hong

Abstract

This paper proposes a new dividend-based S&P 500 Index return predictor, the implied dividend yield term structure (IDYTS). We show that the IDYTS is a “cleaner” predictor than its conventional counterpart, the dividend price ratio (DP), in that the expected return is a linear combination of the level and slope of the term structure. Exploiting non-arbitrage relationships and the forward-looking nature of the options market, we estimate the IDYTS and investigate its index return predictability. The IDYTS outperforms the DP in predictive regressions, and the optimal IDYTS portfolio, constructed by using the IDYTS in a predictive regression, stochastically dominates and yields a higher Sharpe ratio than the DP portfolio.

Suggested Citation

  • Bilson, John F.O. & Kang, Sang Baum & Luo, Hong, 2015. "The term structure of implied dividend yields and expected returns," Economics Letters, Elsevier, vol. 128(C), pages 9-13.
  • Handle: RePEc:eee:ecolet:v:128:y:2015:i:c:p:9-13
    DOI: 10.1016/j.econlet.2015.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176515000130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2015.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Jules van Binsbergen & Michael Brandt & Ralph Koijen, 2012. "On the Timing and Pricing of Dividends," American Economic Review, American Economic Association, vol. 102(4), pages 1596-1618, June.
    3. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    4. van Binsbergen, Jules & Hueskes, Wouter & Koijen, Ralph & Vrugt, Evert, 2013. "Equity yields," Journal of Financial Economics, Elsevier, vol. 110(3), pages 503-519.
      • Jules H. van Binsbergen & Wouter Hueskes & Ralph Koijen & Evert B. Vrugt, 2011. "Equity Yields," NBER Working Papers 17416, National Bureau of Economic Research, Inc.
    5. George M. Constantinides & Michal Czerwonko & Jens Carsten Jackwerth & Stylianos Perrakis, 2011. "Are Options on Index Futures Profitable for Risk‐Averse Investors? Empirical Evidence," Journal of Finance, American Finance Association, vol. 66(4), pages 1407-1437, August.
    6. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    7. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    8. JULES H. Van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present‐Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, August.
    9. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    10. Benjamin Golez, 2014. "Expected Returns and Dividend Growth Rates Implied by Derivative Markets," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 790-822.
    11. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    12. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Wang & Jingmei Zhao & Qing Li & Xiangyu Wei, 2024. "Considering momentum spillover effects via graph neural network in option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 1069-1094, June.
    2. Svetlozar Rachev & Frank J. Fabozzi & Boryana Racheva-Iotova & Abootaleb Shirvani, 2017. "Option Pricing with Greed and Fear Factor: The Rational Finance Approach," Papers 1709.08134, arXiv.org, revised Mar 2020.
    3. Quaye, Enoch & Tunaru, Radu, 2022. "The stock implied volatility and the implied dividend volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    2. Ilaria Piatti & Fabio Trojani, 2020. "Dividend Growth Predictability and the Price–Dividend Ratio," Management Science, INFORMS, vol. 66(1), pages 130-158, January.
    3. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    4. Kaihua Deng & Chang-Jin Kim, 2015. "Predicting Stock Returns — The Information Content Of Predictors Across Horizons," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-27, December.
    5. Møller, Stig V. & Sander, Magnus, 2017. "Dividends, earnings, and predictability," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 153-163.
    6. Zhi Da & Ravi Jagannathan & Jianfeng Shen, 2014. "Growth Expectations, Dividend Yields, and Future Stock Returns," NBER Working Papers 20651, National Bureau of Economic Research, Inc.
    7. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    8. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    9. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    10. Park, Dojoon & Hahn, Jaehoon & Eom, Young Ho, 2024. "Predicting the equity premium with financial ratios: A comprehensive look over a long period in Korea," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
    11. Maio, Paulo & Xu, Danielle, 2020. "Cash-flow or return predictability at long horizons? The case of earnings yield," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 172-192.
    12. Golinski, Adam & Madeira, Joao & Rambaccussing, Dooruj, 2014. "Fractional Integration of the Price-Dividend Ratio in a Present-Value Model of Stock Prices," SIRE Discussion Papers 2015-79, Scottish Institute for Research in Economics (SIRE).
    13. Golinski, Adam & Madeira, Joao & Rambaccussing, Dooruj, 2014. "Fractional Integration of the Price-Dividend Ratio in a Present-Value Model," MPRA Paper 58554, University Library of Munich, Germany.
    14. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    15. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    16. Maio, Paulo & Santa-Clara, Pedro, 2012. "Multifactor models and their consistency with the ICAPM," Journal of Financial Economics, Elsevier, vol. 106(3), pages 586-613.
    17. le Bris, David & Goetzmann, William N. & Pouget, Sébastien, 2019. "The present value relation over six centuries: The case of the Bazacle company," Journal of Financial Economics, Elsevier, vol. 132(1), pages 248-265.
    18. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    19. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    20. Engsted, Tom & Pedersen, Thomas Q., 2010. "The dividend-price ratio does predict dividend growth: International evidence," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 585-605, September.

    More about this item

    Keywords

    Predictive regression; Dividend yield; Dividend price ratio; Sharpe ratio; Stochastic dominance;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:128:y:2015:i:c:p:9-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.