IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v69y2010i10p1918-1925.html
   My bibliography  Save this article

A directional distance function approach to regional environmental-economic assessments

Author

Listed:
  • Macpherson, Alexander J.
  • Principe, Peter P.
  • Smith, Elizabeth R.

Abstract

Numerous difficulties await those creating regional-scale environmental assessments, from data having inconsistent spatial or temporal scales to poorly-understood environmental processes and indicators. Including socioeconomic variables further complicates assessments. While statistical or process-based regional environmental assessment models may be computationally or financially expensive, we propose a simple nonparametric outcomes-based approach using a directional distance function from the efficiency and productivity analysis literature. The regional environmental-economic directional distance function characterizes the relative efficiency of geographic units in combining multiple inputs to produce multiple desirable and undesirable socioeconomic and environmental outputs. This function makes no assumptions about the functional relationships among variables, but by quantifying the extent to which desirable outputs can be expanded and inputs and undesirable outputs contracted, the function can help decisionmakers identify the most important broad-scale management and restoration opportunities across a heterogeneous region. A case study involving 134 watersheds in the Mid-Atlantic region of the USA indicates that, depending on which outputs are specified as desirable in the models, 25%-33% of the watersheds are efficient in producing desirable outputs while minimizing inputs and undesirable outputs. Models including socioeconomic indicators exhibit increased watershed efficiency compared to models using only environmental indicators. Efficiency levels appear to be correlated with ecoregions.

Suggested Citation

  • Macpherson, Alexander J. & Principe, Peter P. & Smith, Elizabeth R., 2010. "A directional distance function approach to regional environmental-economic assessments," Ecological Economics, Elsevier, vol. 69(10), pages 1918-1925, August.
  • Handle: RePEc:eee:ecolec:v:69:y:2010:i:10:p:1918-1925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(10)00155-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    2. Fare, Rolf, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    3. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    4. Banker, Rajiv D. & Zheng, Zhiqiang (Eric) & Natarajan, Ram, 2010. "DEA-based hypothesis tests for comparing two groups of decision making units," European Journal of Operational Research, Elsevier, vol. 206(1), pages 231-238, October.
    5. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    6. Warren Vaneman & Konstantinos Triantis, 2003. "The Dynamic Production Axioms and System Dynamics Behaviors: The Foundation for Future Integration," Journal of Productivity Analysis, Springer, vol. 19(1), pages 93-113, January.
    7. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    8. Paul J. Ferraro, 2004. "Targeting Conservation Investments in Heterogeneous Landscapes: A Distance-Function Approach and Application to Watershed Management," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 905-918.
    9. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    10. Fare, Rolf & Grosskopf, Shawna & Pasurka, Carl Jr., 2007. "Pollution abatement activities and traditional productivity," Ecological Economics, Elsevier, vol. 62(3-4), pages 673-682, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    2. Wei, Chu & Löschel, Andreas & Liu, Bing, 2015. "Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis," Energy Economics, Elsevier, vol. 49(C), pages 33-43.
    3. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    4. A. Zanella & A. Camanho & T. Dias, 2015. "The assessment of cities’ livability integrating human wellbeing and environmental impact," Annals of Operations Research, Springer, vol. 226(1), pages 695-726, March.
    5. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
    6. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    7. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun & Managi, Shunsuke, 2015. "The enhanced Russell-based directional distance measure with undesirable outputs: Numerical example considering CO2 emissions," Omega, Elsevier, vol. 53(C), pages 30-40.
    8. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    9. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    10. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    11. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    12. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    13. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    14. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    15. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    16. Alessandro Manello, 2012. "Comparing green performances of Italian and German firms," CERIS Working Paper 201209, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    17. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    18. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    19. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    20. Hampf, Benjamin, 2018. "Cost and environmental efficiency of U.S. electricity generation: Accounting for heterogeneous inputs and transportation costs," Energy, Elsevier, vol. 163(C), pages 932-941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:69:y:2010:i:10:p:1918-1925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.