IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v238y2025ics0921800925002290.html

Is decoupling enough to achieve the U.S. climate targets for agriculture and forestry? Historical greenhouse gas and biomass fluxes from AFOLU sector production in the United States, 1910–2022

Author

Listed:
  • Magerl, Andreas
  • Erb, Karl-Heinz
  • Lauk, Christian
  • Roux, Nicolas
  • Gingrich, Simone

Abstract

The U.S. have committed to a 35 % decrease of non-CO2 greenhouse gas (GHG) emissions (CH4, N2O) by 2030. Around half of these emissions stem from the AFOLU sector (agriculture forestry, and other land-use), while forests sequester CO2 through biomass growth. Efforts have centred on efficiency improvements to decouple biomass production from emissions. The goal of this study is to 1.) quantify the AFOLU sector's production and GHG dynamics between 1910 and 2022, 2.) conduct a decoupling analysis of sectoral and product trends, yearly and cumulatively, 3) evaluate how past and ongoing trends of decoupling compare to land-based climate mitigation targets. Key GHG emission sources include livestock and crop production. The AFOLU sector's annual GHG balance fluctuated between sinks and sources but cumulatively the sector emitted slightly less (42,914 Megatonnes CO2 equivalents, MtCO2e) than it sequestered (−44,130 MtCO2e). Partial decoupling was achieved, driven by forestry dynamics, efficiency gains in livestock production, and shifts to less emission-intensive products. However, decoupling has been inconsistent, and increased agricultural production has offset efficiency gains. To achieving climate targets solely through decoupling would require emissions to fall 50 % stronger than they currently do. Our findings support research suggesting that sufficiency measures e.g. reducing livestock production and consumption are necessary to decouple food provision from GHG emissions.

Suggested Citation

  • Magerl, Andreas & Erb, Karl-Heinz & Lauk, Christian & Roux, Nicolas & Gingrich, Simone, 2025. "Is decoupling enough to achieve the U.S. climate targets for agriculture and forestry? Historical greenhouse gas and biomass fluxes from AFOLU sector production in the United States, 1910–2022," Ecological Economics, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:ecolec:v:238:y:2025:i:c:s0921800925002290
    DOI: 10.1016/j.ecolecon.2025.108746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800925002290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2025.108746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Farooq Shah & Wei Wu, 2019. "Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    2. Howard, James L. & Liang, Shaobo, 2019. "U.S. Timber Production, Trade, Consumption, and Price Statistics, 1965-2017," USDA Miscellaneous 358984, United States Department of Agriculture.
    3. Raza, Muhammad Yousaf & Wu, Rongxin & Lin, Boqiang, 2023. "A decoupling process of Pakistan's agriculture sector: Insights from energy and economic perspectives," Energy, Elsevier, vol. 263(PC).
    4. Mahendra Kumar Singh & Deep Mukherjee, 2019. "Drivers of greenhouse gas emissions in the United States: revisiting STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 3015-3031, December.
    5. Léonore Darrobers & Simone Gingrich & Andreas Magerl, 2024. "Timber trade in the United States of America 1870 to 2017. A socio-metabolic analysis," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 57(4), pages 252-266, October.
    6. Jason Hickel & Giorgos Kallis, 2020. "Is Green Growth Possible?," New Political Economy, Taylor & Francis Journals, vol. 25(4), pages 469-486, June.
    7. Matthew J. Gidden & Thomas Gasser & Giacomo Grassi & Nicklas Forsell & Iris Janssens & William F. Lamb & Jan Minx & Zebedee Nicholls & Jan Steinhauser & Keywan Riahi, 2023. "Aligning climate scenarios to emissions inventories shifts global benchmarks," Nature, Nature, vol. 624(7990), pages 102-108, December.
    8. Stephanie Roe & Charlotte Streck & Michael Obersteiner & Stefan Frank & Bronson Griscom & Laurent Drouet & Oliver Fricko & Mykola Gusti & Nancy Harris & Tomoko Hasegawa & Zeke Hausfather & Petr Havlík, 2019. "Contribution of the land sector to a 1.5 °C world," Nature Climate Change, Nature, vol. 9(11), pages 817-828, November.
    9. Sylvia Gierlinger & Fridolin Krausmann, 2012. "The Physical Economy of the United States of America," Journal of Industrial Ecology, Yale University, vol. 16(3), pages 365-377, June.
    10. Kate Dooley & Sivan Kartha, 2018. "Land-based negative emissions: risks for climate mitigation and impacts on sustainable development," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 79-98, February.
    11. Valentin Bellassen & Sebastiaan Luyssaert, 2014. "Carbon sequestration: Managing forests in uncertain times," Nature, Nature, vol. 506(7487), pages 153-155, February.
    12. Eduardo Aguilera & Gloria I. Guzmán & Juan Infante-Amate & David Soto & Roberto García-Ruiz & Antonio Herrera & Inmaculada Villa & Eva Torremocha & Guiomar Carranza & Manuel González de Molina, 2015. "Embodied energy in agricultural inputs. Incorporating a historical perspective," Documentos de Trabajo de la Sociedad de Estudios de Historia Agraria 1507, Sociedad de Estudios de Historia Agraria.
    13. Ohrel, Sara Bushey, 2019. "Policy Perspective on the Role of Forest Sector Modeling," Journal of Forest Economics, now publishers, vol. 34(3-4), pages 187-204, November.
    14. Gingrich, Simone & Lauk, Christian & Krausmann, Fridolin & Erb, Karl-Heinz & Le Noë, Julia, 2021. "Changes in energy and livestock systems largely explain the forest transition in Austria (1830–1910)," Land Use Policy, Elsevier, vol. 109(C).
    15. Abhijeet Mishra & Florian Humpenöder & Galina Churkina & Christopher P. O. Reyer & Felicitas Beier & Benjamin Leon Bodirsky & Hans Joachim Schellnhuber & Hermann Lotze-Campen & Alexander Popp, 2022. "Land use change and carbon emissions of a transformation to timber cities," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Haight, Robert G. & Bluffstone, Randall & Kline, Jeffrey D. & Coulston, John W. & Wear, David N. & Zook, Kate, 2020. "Estimating the Present Value of Carbon Sequestration in U.S. Forests, 2015–2050, for Evaluating Federal Climate Change Mitigation Policies," Agricultural and Resource Economics Review, Cambridge University Press, vol. 49(1), pages 150-177, April.
    17. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    18. Huang, Jing & Han, Wenjing & Zhang, Zhengfeng & Ning, Shanshan & Zhang, Xiaoling, 2024. "The decoupling relationship between land use efficiency and carbon emissions in China: An analysis using the Socio-Ecological Systems (SES) framework," Land Use Policy, Elsevier, vol. 138(C).
    19. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Julia Bailey-Serres & Jane E. Parker & Elizabeth A. Ainsworth & Giles E. D. Oldroyd & Julian I. Schroeder, 2019. "Genetic strategies for improving crop yields," Nature, Nature, vol. 575(7781), pages 109-118, November.
    21. Giacomo Grassi & Elke Stehfest & Joeri Rogelj & Detlef Vuuren & Alessandro Cescatti & Jo House & Gert-Jan Nabuurs & Simone Rossi & Ramdane Alkama & Raúl Abad Viñas & Katherine Calvin & Guido Ceccherin, 2021. "Critical adjustment of land mitigation pathways for assessing countries’ climate progress," Nature Climate Change, Nature, vol. 11(5), pages 425-434, May.
    22. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    23. Fischer-Kowalski, Marina & Rovenskaya, Elena & Krausmann, Fridolin & Pallua, Irene & Mc Neill, John R., 2019. "Energy transitions and social revolutions," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 69-77.
    24. Chaopeng Hong & Jennifer A. Burney & Julia Pongratz & Julia E. M. S. Nabel & Nathaniel D. Mueller & Robert B. Jackson & Steven J. Davis, 2021. "Global and regional drivers of land-use emissions in 1961–2017," Nature, Nature, vol. 589(7843), pages 554-561, January.
    25. William F. Lamb & Michael Grubb & Francesca Diluiso & Jan C. Minx, 2022. "Countries with sustained greenhouse gas emissions reductions: an analysis of trends and progress by sector," Climate Policy, Taylor & Francis Journals, vol. 22(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jing & Han, Wenjing & Zhang, Zhengfeng & Ning, Shanshan & Zhang, Xiaoling, 2024. "The decoupling relationship between land use efficiency and carbon emissions in China: An analysis using the Socio-Ecological Systems (SES) framework," Land Use Policy, Elsevier, vol. 138(C).
    2. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Infante-Amate, Juan & Travieso, Emiliano & Aguilera, Eduardo, 2024. "Unsustainable prosperity? Decoupling wellbeing, economic growth, and greenhouse gas emissions over the past 150 years," World Development, Elsevier, vol. 184(C).
    4. Michael G. Windisch & Florian Humpenöder & Leon Merfort & Nico Bauer & Gunnar Luderer & Jan Philipp Dietrich & Jens Heinke & Christoph Müller & Gabriel Abrahao & Hermann Lotze-Campen & Alexander Popp, 2025. "Hedging our bet on forest permanence for the economic viability of climate targets," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Yue He & Shilong Piao & Philippe Ciais & Hao Xu & Thomas Gasser, 2024. "Future land carbon removals in China consistent with national inventory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Haoran Zhang & Limin Jiao & Cai Li & Zhongci Deng & Zhen Wang & Qiqi Jia & Xihong Lian & Yaolin Liu & Yuanchao Hu, 2024. "Global environmental impacts of food system from regional shock: Russia-Ukraine war as an example," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    7. Tiejun Dai & Shuo Shan, 2020. "Path Analysis of Beijing’s Dematerialization Development Based on System Dynamics," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    8. Warlenius, Rikard Hjorth, 2023. "The limits to degrowth: Economic and climatic consequences of pessimist assumptions on decoupling," Ecological Economics, Elsevier, vol. 213(C).
    9. repec:ags:aaea22:337099 is not listed on IDEAS
    10. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Kalimeris, Panos & Bithas, Kostas & Richardson, Clive & Nijkamp, Peter, 2020. "Hidden linkages between resources and economy: A “Beyond-GDP” approach using alternative welfare indicators," Ecological Economics, Elsevier, vol. 169(C).
    12. Kemen G. Austin & Alice Favero & Nicklas Forsell & Brent L. Sohngen & Chris M. Wade & Sara B. Ohrel & Shaun Ragnauth, 2025. "Targeting climate finance for global forests," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    13. Katarzyna Frodyma & Monika Papież & Sławomir Śmiech, 2020. "Decoupling Economic Growth from Fossil Fuel Use—Evidence from 141 Countries in the 25-Year Perspective," Energies, MDPI, vol. 13(24), pages 1-21, December.
    14. Juan Infante-Amate & Emiliano Travieso & Eduardo Aguilera, 2025. "Green growth in the mirror of history," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    15. Zhang, Yao & Zhu, Yingming & Zheng, Ziyan & Zhu, Yuyao, 2025. "Low-energy consumption growth of agriculture in China: From the perspective of decoupling between agricultural energy consumption and agricultural economic growth," Energy, Elsevier, vol. 334(C).
    16. Yiannis Moustakis & Tobias Nützel & Hao-Wei Wey & Wenkai Bao & Julia Pongratz, 2024. "Temperature overshoot responses to ambitious forestation in an Earth System Model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Liu, Bingbing & Yang, Jun & Qi, Shuhao & Shi, Rui, 2025. "Decoupling effects and impact mechanisms of carbon emissions in China's plantation system," International Review of Economics & Finance, Elsevier, vol. 102(C).
    18. Eilidh J. Forster & David Styles & John R. Healey, 2025. "Temperate forests can deliver future wood demand and climate-change mitigation dependent on afforestation and circularity," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    19. Zhang, Hengshuo & Li, Shaoping & Cui, Liying & Li, Liping, 2023. "Energy industry advancedization of dynamic evolution and resource-environment decoupling effect: Evidence from China's value chain upgrading," Energy, Elsevier, vol. 283(C).
    20. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    21. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:238:y:2025:i:c:s0921800925002290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.