IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v28y2011i1p36-46.html
   My bibliography  Save this article

Parameter estimation of an asset price model driven by a weak hidden Markov chain

Author

Listed:
  • Xi, Xiaojing
  • Mamon, Rogemar

Abstract

We introduce a weak hidden Markov model (WHMM) in an attempt to capture more accurately the evolution of a risky asset. The log returns of assets are modulated by a weak or higher-order Markov chain with finite-state space. In particular, the optimal estimates of the second-order Markov chain and parameters of the model are given in terms of the discrete-time filters for the state of the Markov chain, the number of jumps, occupation time and auxiliary processes. We provide a detailed implementation of the model to a dataset of financial time series along with the analysis of the h-day ahead forecasts. The results of our error analysis suggest that within the dataset studied and considering longer predictive horizons, WHMM gives a better forecasting performance than the traditional HMM.

Suggested Citation

  • Xi, Xiaojing & Mamon, Rogemar, 2011. "Parameter estimation of an asset price model driven by a weak hidden Markov chain," Economic Modelling, Elsevier, vol. 28(1), pages 36-46.
  • Handle: RePEc:eee:ecmode:v:28:y:2011:i:1:p:36-46
    DOI: 10.1016/j.econmod.2010.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999310002051
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turner, C.M. & Startz, R. & Nelson, C.R., 1989. "The Markov Model Of Heteroskedasticity, Risk And Learning In The Stock Market," Working Papers 89-01, University of Washington, Department of Economics.
    2. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    3. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
    4. Christina Erlwein & Rogemar Mamon, 2009. "An online estimation scheme for a Hull–White model with HMM-driven parameters," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 87-107, March.
    5. Tak-Kuen Siu & Wai-Ki Ching & Eric Fung & Michael Ng, 2005. "Extracting Information from Spot Interest Rates and Credit Ratings using Double Higher-Order Hidden Markov Models," Computational Economics, Springer;Society for Computational Economics, vol. 26(3), pages 69-102, November.
    6. Elliott, R. J. & Malcolm, W. P. & Tsoi, Allanus H., 2003. "Robust parameter estimation for asset price models with Markov modulated volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(8), pages 1391-1409, June.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ecmode:v:66:y:2017:i:c:p:223-232 is not listed on IDEAS
    2. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    3. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming & Tenyakov, Anton, 2015. "Mortality modelling with regime-switching for the valuation of a guaranteed annuity option," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 108-120.
    4. Jo~ao Pedro Rodrigues do Carmo, 2018. "Modeling stock markets through the reconstruction of market processes," Papers 1803.06653, arXiv.org.
    5. Xiaojing Xi & Rogemar Mamon, 2014. "Capturing the Regime-Switching and Memory Properties of Interest Rates," Computational Economics, Springer;Society for Computational Economics, vol. 44(3), pages 307-337, October.
    6. Sun, Qi & Xu, Weijun & Xiao, Weilin, 2013. "An empirical estimation for mean-reverting coal prices with long memory," Economic Modelling, Elsevier, vol. 33(C), pages 174-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:28:y:2011:i:1:p:36-46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.