IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/21154.html
   My bibliography  Save this paper

Markov-switching Asset Allocation: Do Profitable Strategies Exist?

Author

Listed:
  • Bulla, Jan
  • Mergner, Sascha
  • Bulla, Ingo
  • Sesboüé, André
  • Chesneau, Christophe

Abstract

This paper proposes a straightforward Markov-switching asset allocation model, which reduces the market exposure to periods of high volatility. The main purpose of the study is to examine the performance of a regime-based asset allocation strategy under realistic assumptions, compared to a buy and hold strategy. An empirical study, utilizing daily return series of major equity indices in the US, Japan, and Germany over the last 40 years, investigates the performance of the model. In an out-of-sample context, the strategy proves profitable after taking transaction costs into account. For the regional markets under consideration, the volatility reduces on average by 41%. Additionally, annualized excess returns attain 18.5 to 201.6 basis points.

Suggested Citation

  • Bulla, Jan & Mergner, Sascha & Bulla, Ingo & Sesboüé, André & Chesneau, Christophe, 2010. "Markov-switching Asset Allocation: Do Profitable Strategies Exist?," MPRA Paper 21154, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:21154
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/21154/1/MPRA_paper_21154.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andreas Graflund & Birger Nilsson, 2003. "Dynamic Portfolio Selection: the Relevance of Switching Regimes and Investment Horizon," European Financial Management, European Financial Management Association, vol. 9(2), pages 179-200.
    2. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    3. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
    4. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    5. Carhart, Mark M, 1997. " On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    6. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Martin Hess, 2006. "Timing and diversification: A state-dependent asset allocation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 12(3), pages 189-204.
    9. Jan Bulla & Andreas Berzel, 2008. "Computational issues in parameter estimation for stationary hidden Markov models," Computational Statistics, Springer, vol. 23(1), pages 1-18, January.
    10. Massimo Guidolin & Allan Timmermann, 2005. "Economic Implications of Bull and Bear Regimes in UK Stock and Bond Returns," Economic Journal, Royal Economic Society, vol. 115(500), pages 111-143, January.
    11. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    12. Jedrzej Bialkowski, 2004. "Modelling Returns on Stock Indices for Western and Central European Stock Exchanges - a Markov Switching Approach," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 2(2), pages 81-100.
    13. Manuel Ammann & Michael Verhofen, 2006. "The Effect of Market Regimes on Style Allocation," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 309-337, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Dal Pra & Massimo Guidolin & Manuela Pedio & Fabiola Vasile, 2016. "Do Regimes in Excess Stock Return Predictability Create Economic Value? An Out-of-Sample Portfolio Analysis," BAFFI CAREFIN Working Papers 1637, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    2. repec:eee:empfin:v:43:y:2017:i:c:p:1-32 is not listed on IDEAS
    3. repec:pal:assmgt:v:17:y:2016:i:5:d:10.1057_jam.2016.12 is not listed on IDEAS
    4. Wasim Ahmad & N. Bhanumurthy & Sanjay Sehgal, 2015. "Regime dependent dynamics and European stock markets: Is asset allocation really possible?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(1), pages 77-107, February.

    More about this item

    Keywords

    Hidden Markov model; Markov-switching model; asset allocation; timing; volatility regimes; daily returns;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:21154. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.