IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v78y2023icp744-764.html
   My bibliography  Save this article

Examining the spatiotemporal evolution, dynamic convergence and drivers of green total factor productivity in China’s urban agglomerations

Author

Listed:
  • Feng, Rui
  • Shen, Chen
  • Dai, Dandan
  • Xin, Yaru

Abstract

This study investigates the green total factor productivity of urban agglomerations, a high-level urban organisational form, by estimating the green total factor productivity (GTFP) of 285 cities in China from 2003 to 2017 using global data envelopment analysis and a super-slack-based measure model with undesirable output. Based on these estimations, we obtain the GTFP of 19 urban agglomerations and analyse the spatiotemporal evolution, dynamic evolution of spatial distribution, and regional differences in the urban agglomeration GTFP using various analytical tools such as the Dagum Gini coefficient, subgroup decomposition, σ and β convergence analysis, and kernel density estimation. Additionally, we identify and analyse the driving factors of GTFP growth in urban agglomerations by employing a panel model from the perspective of improving the efficiency of cities within urban agglomerations and optimising the development of intercity industrial and spatial structures. The results are as follows: First, the GTFP of urban agglomerations generally exhibit a fluctuating upward trend with low values in northwest-central China and high values in the north-southeastern coastal areas. Second, the GTFP differences among the urban agglomerations present an overall convergent trend, with the smallest gap between the national-level urban agglomerations and a stable performance. The gaps between regional and local urban agglomerations undergo considerable narrowing of the evolutionary trend, whereas gaps between local urban agglomerations and other urban agglomerations keep expanding. Third, economic growth, environmental regulation, energy consumption, and foreign direct investment and technological progress are conducive to improving urban GTFP, and a U-shaped relationship exists between cooperative industrial agglomeration and urban agglomeration GTFP. We suggest that strengthening regional collaborative environmental governance can improve the GTFP in urban agglomerations.

Suggested Citation

  • Feng, Rui & Shen, Chen & Dai, Dandan & Xin, Yaru, 2023. "Examining the spatiotemporal evolution, dynamic convergence and drivers of green total factor productivity in China’s urban agglomerations," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 744-764.
  • Handle: RePEc:eee:ecanpo:v:78:y:2023:i:c:p:744-764
    DOI: 10.1016/j.eap.2023.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592623000632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2023.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper, 1963. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 10(1), pages 273-274, March.
    2. Evert J Meijers & Martijn J Burger, 2010. "Spatial Structure and Productivity in US Metropolitan Areas," Environment and Planning A, , vol. 42(6), pages 1383-1402, June.
    3. Jafar Hussain & Chien‐Chiang Lee, 2022. "A green path towards sustainable development: Optimal behavior of the duopoly game model with carbon neutrality instruments," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1523-1541, December.
    4. Devereux, Michael P. & Griffith, Rachel & Simpson, Helen, 2004. "The geographic distribution of production activity in the UK," Regional Science and Urban Economics, Elsevier, vol. 34(5), pages 533-564, September.
    5. Jin, Gang & Shen, Kunrong & Li, Jian, 2020. "Interjurisdiction political competition and green total factor productivity in China: An inverted-U relationship," China Economic Review, Elsevier, vol. 61(C).
    6. Roberto Gómez-Calvet & David Conesa & Ana Rosa Gómez-Calvet & Emili Tortosa-Ausina, 2014. "Extending the use of super-efficiency under undesirable outputs: An application to energy efficiency in the European Union," Working Papers 2014/03, Economics Department, Universitat Jaume I, Castellón (Spain).
    7. Tian, Ying & Feng, Chao, 2022. "The internal-structural effects of different types of environmental regulations on China's green total-factor productivity," Energy Economics, Elsevier, vol. 113(C).
    8. Ordás Criado, C. & Valente, S. & Stengos, T., 2011. "Growth and pollution convergence: Theory and evidence," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 199-214, September.
    9. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    10. Wang, Mei & Xu, Mi & Ma, Shaojun, 2021. "The effect of the spatial heterogeneity of human capital structure on regional green total factor productivity," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 427-441.
    11. Rath, Badri Narayan & Akram, Vaseem & Bal, Debi Prasad & Mahalik, Mantu Kumar, 2019. "Do fossil fuel and renewable energy consumption affect total factor productivity growth? Evidence from cross-country data with policy insights," Energy Policy, Elsevier, vol. 127(C), pages 186-199.
    12. Richard Perkins & Eric Neumayer, 2008. "Fostering Environment Efficiency through Transnational Linkages? Trajectories of CO2 and SO2, 1980–2000," Environment and Planning A, , vol. 40(12), pages 2970-2989, December.
    13. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    14. Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
    15. Yuanxin Peng & Zhuo Chen & Juanzhi Xu & Jay Lee, 2020. "Analysis of green total factor productivity trend and its determinants for the countries along silk roads," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1711-1726, December.
    16. Miller, Stephen M. & Upadhyay, Mukti P., 2002. "Total factor productivity and the convergence hypothesis," Journal of Macroeconomics, Elsevier, vol. 24(2), pages 267-286, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runqun Yu & Zhuoyang Luo, 2023. "Research on the Influence Mechanism of Factor Misallocation on the Transformation Efficiency of Resource-Based Cities Based on the Optimization Direction Function Calculation Method," Sustainability, MDPI, vol. 15(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Mao & Pierre Failler, 2022. "Local Government Debt and Green Total Factor Productivity—Empirical Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(19), pages 1-13, September.
    2. Lei Jiang & Xingyu Chen & Yang Jiang & Bo Zhang, 2023. "Exploring the Direct and Spillover Effects of Aging on Green Total Factor Productivity in China: A Spatial Econometric Approach," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    3. Huang, Hongyun & Mo, Renbian & Chen, Xingquan, 2021. "New patterns in China's regional green development: An interval Malmquist–Luenberger productivity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 161-173.
    4. Yakun Wang & Jingli Jiang & Dongqing Wang & Xinshang You, 2022. "Can Mechanization Promote Green Agricultural Production? An Empirical Analysis of Maize Production in China," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    5. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    6. Weixiang Zhao & Yankun Xu, 2022. "Public Expenditure and Green Total Factor Productivity: Evidence from Chinese Prefecture-Level Cities," IJERPH, MDPI, vol. 19(9), pages 1-27, May.
    7. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    8. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    9. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    10. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Du, Mengfan & Zhang, Yue-Jun, 2023. "The impact of producer services agglomeration on green economic development: Evidence from 278 Chinese cities," Energy Economics, Elsevier, vol. 124(C).
    12. Huaping Zhang & Yue Dong, 2022. "Measurement and Spatial Correlations of Green Total Factor Productivities of Chinese Provinces," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    13. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    14. Liangjun Yi & Wei Zhang & Yuanxin Liu & Weilin Zhang, 2021. "An Analysis of the Impact of Market Segmentation on Energy Efficiency: A Spatial Econometric Model Applied in China," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    15. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    16. Fenfen Li & Bo Dai & Qifan Wu, 2021. "Dynamic Green Growth Assessment of China’s Industrial System with an Improved SBM Model and Global Malmquist Index," Mathematics, MDPI, vol. 9(20), pages 1-26, October.
    17. Wenhan Ren & Yu Chen, 2022. "Realizing the Improvement of Green Total Factor Productivity of the Marine Economy—New Evidence from China’s Coastal Areas," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    18. Jiang, Yufan & Wang, Hongyan & Liu, Zuankuo, 2021. "The impact of the free trade zone on green total factor productivity ——evidence from the shanghai pilot free trade zone," Energy Policy, Elsevier, vol. 148(PB).
    19. Qinghua Huang & Min Liu, 2022. "Trade openness and green total factor productivity: testing the role of environment regulation based on dynamic panel threshold model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9304-9329, July.
    20. Li, Shuangmei & Zhu, Xuehong & Zhang, Tao, 2023. "Optimum combination of heterogeneous environmental policy instruments and market for green transformation: Empirical evidence from China's metal sector," Energy Economics, Elsevier, vol. 123(C).

    More about this item

    Keywords

    Convergence; Driving factor; Green total factor productivity; Spatiotemporal differentiation; Super-slack-based measure model; Urban agglomeration;
    All these keywords.

    JEL classification:

    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:78:y:2023:i:c:p:744-764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.