IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

An analysis of the effect of noise in a heterogeneous agent financial market model

  • Chiarella, Carl
  • He, Xue-Zhong
  • Zheng, Min

Heterogeneous agent models (HAMs) in finance and economics are often characterised by high dimensional nonlinear stochastic differential or difference systems. Because of the complexity of the interaction between the nonlinearities and noise, a commonly used, often called indirect, approach to the study of HAMs combines theoretical analysis of the underlying deterministic skeleton with numerical analysis of the stochastic model. However, it is well known that this indirect approach may not properly characterise the nature of the stochastic model. This paper aims to tackle this issue by developing a direct and analytical approach to the analysis of a stochastic model of speculative price dynamics involving two types of agents, fundamentalists and chartists, and the market price equilibria of which can be characterised by the stationary measures of a stochastic dynamical system. Using the stochastic method of averaging and stochastic bifurcation theory, we show that the stochastic model displays behaviour consistent with that of the underlying deterministic model when the time lag in the formation of price trends used by the chartists is far away from zero. However, when this lag approaches zero, such consistency breaks down.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(10)00210-1
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 35 (2011)
Issue (Month): 1 (January)
Pages: 148-162

as
in new window

Handle: RePEc:eee:dyncon:v:35:y:2011:i:1:p:148-162
Contact details of provider: Web page: http://www.elsevier.com/locate/jedc

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. W.A. Brock, C.H. Hommes and F.O.O. Wagener, 2001. "Evolutionary dynamics in financial markets with many trader types," Computing in Economics and Finance 2001 119, Society for Computational Economics.
  2. Brock, W.A. & Hommes, C.H., 1996. "A Rational Route to Randomness," Working papers 9530r, Wisconsin Madison - Social Systems.
  3. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
  4. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
  5. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186 Elsevier.
  6. Barunik, J. & Vosvrda, M., 2009. "Can a stochastic cusp catastrophe model explain stock market crashes?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(10), pages 1824-1836, October.
  7. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
  8. Carl Chiarella & Tony He & Cars H. Hommes, 2005. "A Dynamic Analysis of Moving Average Rules," Tinbergen Institute Discussion Papers 05-057/1, Tinbergen Institute.
  9. Rheinlaender Thorsten & Steinkamp Marcus, 2004. "A Stochastic Version of Zeeman's Market Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-25, December.
  10. Carl Chiarella & Xue-Zhong He & Min Zheng, 2007. "The Stochastic Dynamics of Speculative Prices," Research Paper Series 208, Quantitative Finance Research Centre, University of Technology, Sydney.
  11. Cees Diks & Florian Wagener, 2006. "A Weak Bifurcation Theory for Discrete Time Stochastic Dynamical Systems," Tinbergen Institute Discussion Papers 06-043/1, Tinbergen Institute.
  12. Hommes, C.H. & Wagener, F.O.O., 2008. "Complex evolutionary systems in behavioral finance," CeNDEF Working Papers 08-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  13. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
  14. Ulrich Horst & Jan Wenzelburger, 2008. "On non-ergodic asset prices," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 34(2), pages 207-234, February.
  15. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
  16. Zeeman, E. C., 1974. "On the unstable behaviour of stock exchanges," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 39-49, March.
  17. Brock, W.A. & Hommes, C.H., 1996. "Hetergeneous Beliefs and Routes to Chaos in a Simple Asset Pricing Model," Working papers 9621, Wisconsin Madison - Social Systems.
  18. Bohm, Volker & Wenzelburger, Jan, 2005. "On the performance of efficient portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 721-740, April.
  19. Beja, Avraham & Goldman, M Barry, 1980. " On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-48, May.
  20. Horst, Ulrich & Rothe, Christian, 2008. "Queuing, Social Interactions, And The Microstructure Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 12(02), pages 211-233, April.
  21. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
  22. Thorsten Hens & Klaus Reiner Schenk-Hoppé, 2003. "Evolutionary Stability of Portfolio Rules in Incomplete Markets," Discussion Papers 03-03, University of Copenhagen. Department of Economics.
  23. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-96, July.
  24. Wenzelburger, Jan, 2004. "Learning to predict rationally when beliefs are heterogeneous," Journal of Economic Dynamics and Control, Elsevier, vol. 28(10), pages 2075-2104, September.
  25. Chiarella, Carl & He, Xue-Zhong & Hommes, Cars, 2006. "Moving average rules as a source of market instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 12-17.
  26. Charles M.C. Lee & Bhaskaran Swaminathan, 2000. "Price Momentum and Trading Volume," Journal of Finance, American Finance Association, vol. 55(5), pages 2017-2069, October.
  27. Follmer, Hans, 1974. "Random economies with many interacting agents," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 51-62, March.
  28. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233 Elsevier.
  29. Volker Böhm & Carl Chiarella, 2005. "Mean Variance Preferences, Expectations Formation, And The Dynamics Of Random Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 61-97.
  30. Carl Chiarella, 1992. "The Dynamics of Speculative Behaviour," Working Paper Series 13, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  31. Lux, Thomas, 1997. "Time variation of second moments from a noise trader/infection model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 1-38, November.
  32. Follmer, Hans & Horst, Ulrich & Kirman, Alan, 2005. "Equilibria in financial markets with heterogeneous agents: a probabilistic perspective," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 123-155, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:35:y:2011:i:1:p:148-162. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.