IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v34y2010i2p207-230.html
   My bibliography  Save this article

Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation

Author

Listed:
  • Wang, J.
  • Forsyth, P.A.

Abstract

We solve the optimal asset allocation problem using a mean variance approach. The original mean variance optimization problem can be embedded into a class of auxiliary stochastic linear-quadratic (LQ) problems using the method in Zhou and Li (2000) and Li and Ng (2000). We use a finite difference method with fully implicit timestepping to solve the resulting nonlinear Hamilton-Jacobi-Bellman (HJB) PDE, and present the solutions in terms of an efficient frontier and an optimal asset allocation strategy. The numerical scheme satisfies sufficient conditions to ensure convergence to the viscosity solution of the HJB PDE. We handle various constraints on the optimal policy. Numerical tests indicate that realistic constraints can have a dramatic effect on the optimal policy compared to the unconstrained solution.

Suggested Citation

  • Wang, J. & Forsyth, P.A., 2010. "Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 207-230, February.
  • Handle: RePEc:eee:dyncon:v:34:y:2010:i:2:p:207-230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(09)00160-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    2. A. C. Belanger & P. A. Forsyth & G. Labahn, 2009. "Valuing the Guaranteed Minimum Death Benefit Clause with Partial Withdrawals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 451-496.
    3. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    4. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    5. Duan Li & Wan-Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406.
    6. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    7. Munk, Claus, 2000. "Optimal consumption/investment policies with undiversifiable income risk and liquidity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(9), pages 1315-1343, August.
    8. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    9. Damgaard, Anders, 2006. "Computation of reservation prices of options with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 30(3), pages 415-444, March.
    10. Nguyen, Pascal & Portait, Roland, 2002. "Dynamic asset allocation with mean variance preferences and a solvency constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 26(1), pages 11-32, January.
    11. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
    12. Chellathurai, Thamayanthi & Draviam, Thangaraj, 2007. "Dynamic portfolio selection with fixed and/or proportional transaction costs using non-singular stochastic optimal control theory," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2168-2195, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    2. repec:wsi:ijtafx:v:20:y:2017:i:07:n:s0219024917500492 is not listed on IDEAS
    3. Chiu, Mei Choi & Wong, Hoi Ying, 2011. "Mean-variance portfolio selection of cointegrated assets," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1369-1385, August.
    4. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
    5. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    6. Aivaliotis, Georgios & Palczewski, Jan, 2014. "Investment strategies and compensation of a mean–variance optimizing fund manager," European Journal of Operational Research, Elsevier, vol. 234(2), pages 561-570.
    7. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    8. Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
    9. Ballestra, Luca Vincenzo & Pacelli, Graziella, 2013. "Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(6), pages 1142-1167.
    10. Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:34:y:2010:i:2:p:207-230. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.