IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1303.1064.html
   My bibliography  Save this paper

Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection

Author

Listed:
  • Xiangyu Cui
  • Xun Li
  • Duan Li

Abstract

The classical dynamic programming-based optimal stochastic control methods fail to cope with nonseparable dynamic optimization problems as the principle of optimality no longer applies in such situations. Among these notorious nonseparable problems, the dynamic mean-variance portfolio selection formulation had posted a great challenge to our research community until recently. A few solution methods, including the embedding scheme, have been developed in the last decade to solve the dynamic mean-variance portfolio selection formulation successfully. We propose in this paper a novel mean-field framework that offers a more efficient modeling tool and a more accurate solution scheme in tackling directly the issue of nonseparability and deriving the optimal policies analytically for the multi-period mean-variance-type portfolio selection problems.

Suggested Citation

  • Xiangyu Cui & Xun Li & Duan Li, 2013. "Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection," Papers 1303.1064, arXiv.org.
  • Handle: RePEc:arx:papers:1303.1064
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1303.1064
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jianming Xia & Jia-An Yan, 2006. "Markowitz'S Portfolio Optimization In An Incomplete Market," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 203-216.
    2. Ping Chen & Hailiang Yang, 2011. "Markowitz's Mean-Variance Asset-Liability Management with Regime Switching: A Multi-Period Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(1), pages 29-50.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    5. Celikyurt, U. & Ozekici, S., 2007. "Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach," European Journal of Operational Research, Elsevier, vol. 179(1), pages 186-202, May.
    6. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    7. Duan Li & Wan-Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1303.1064. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.