IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v52y2013i1p6-17.html
   My bibliography  Save this article

Continuous-time mean–variance asset–liability management with endogenous liabilities

Author

Listed:
  • Yao, Haixiang
  • Lai, Yongzeng
  • Li, Yong

Abstract

This paper investigates a continuous-time mean–variance asset–liability management problem with endogenous liabilities in a more general market where all the assets can be risky. Different from exogenous liabilities that cannot be controlled, the endogenous liabilities can be controlled by various financial instruments and investors’ decisions. For example, a company can raise fund by issuing different kinds of bonds. Types and quantities of the bonds are controlled by the company itself. Investors optimize allocation not only for their assets, but also for their liabilities under our model. This makes the analysis of the problem more challenging than in the setting based on exogenous liabilities. In this paper, we first prove the existence and uniqueness of the solution to the associated Riccati-type equation by using the Khatri–Rao product technique and the relevant stochastic control theory; we then derive closed form expressions of the efficient strategy and the mean–variance efficient frontier by using the Lagrange multiplier method and the Hamilton–Jacobi–Bellman equation approach, and we next discuss two degenerated cases; finally, we present some numerical examples to illustrate the results obtained in this paper.

Suggested Citation

  • Yao, Haixiang & Lai, Yongzeng & Li, Yong, 2013. "Continuous-time mean–variance asset–liability management with endogenous liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 6-17.
  • Handle: RePEc:eee:insuma:v:52:y:2013:i:1:p:6-17
    DOI: 10.1016/j.insmatheco.2012.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712001151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2012.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
    2. Xie, Shuxiang, 2009. "Continuous-time mean-variance portfolio selection with liability and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 148-155, August.
    3. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
    4. Consiglio, Andrea & Cocco, Flavio & Zenios, Stavros A., 2008. "Asset and liability modelling for participating policies with guarantees," European Journal of Operational Research, Elsevier, vol. 186(1), pages 380-404, April.
    5. Ping Chen & Hailiang Yang, 2011. "Markowitz's Mean-Variance Asset-Liability Management with Regime Switching: A Multi-Period Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(1), pages 29-50.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    8. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    9. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2006. "A path integral approach to asset-liability management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 404-416.
    10. Chen, Ping & Yang, Hailiang & Yin, George, 2008. "Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 456-465, December.
    11. Chiu, Mei Choi & Wong, Hoi Ying, 2011. "Mean-variance portfolio selection of cointegrated assets," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1369-1385, August.
    12. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    13. Markus Leippold & Fabio Trojani & Paolo Vanini, 2011. "Multiperiod mean-variance efficient portfolios with endogenous liabilities," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1535-1546.
    14. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    2. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    3. Chang Hao & Wang Chunfeng & Fang Zhenming, 2017. "Portfolio Selection with Random Liability and Affine Interest Rate in the Mean-Variance Framework," Journal of Systems Science and Information, De Gruyter, vol. 5(3), pages 229-249, June.
    4. Duarte, Thiago B. & Valladão, Davi M. & Veiga, Álvaro, 2017. "Asset liability management for open pension schemes using multistage stochastic programming under Solvency-II-based regulatory constraints," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 177-188.
    5. Yao, Haixiang & Lai, Yongzeng & Ma, Qinghua & Jian, Minjie, 2014. "Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 84-92.
    6. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    7. Jun Yu, 2014. "Optimal Asset-Liability Management for an Insurer Under Markov Regime Switching Jump-Diffusion Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 317-330, November.
    8. Chang, Hao, 2015. "Dynamic mean–variance portfolio selection with liability and stochastic interest rate," Economic Modelling, Elsevier, vol. 51(C), pages 172-182.
    9. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
    10. Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Mean–variance asset–liability management with asset correlation risk and insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 300-310.
    11. Li, Danping & Shen, Yang & Zeng, Yan, 2018. "Dynamic derivative-based investment strategy for mean–variance asset–liability management with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 72-86.
    12. Haixiang Yao & Xun Li & Zhifeng Hao & Yong Li, 2016. "Dynamic asset–liability management in a Markov market with stochastic cash flows," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1575-1597, October.
    13. Zhang, Miao & Chen, Ping & Yao, Haixiang, 2017. "Mean-variance portfolio selection with only risky assets under regime switching," Economic Modelling, Elsevier, vol. 62(C), pages 35-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
    2. Yao, Haixiang & Zeng, Yan & Chen, Shumin, 2013. "Multi-period mean–variance asset–liability management with uncontrolled cash flow and uncertain time-horizon," Economic Modelling, Elsevier, vol. 30(C), pages 492-500.
    3. Yao, Haixiang & Li, Zhongfei & Chen, Shumin, 2014. "Continuous-time mean–variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 36(C), pages 244-251.
    4. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    5. Zhang, Miao & Chen, Ping & Yao, Haixiang, 2017. "Mean-variance portfolio selection with only risky assets under regime switching," Economic Modelling, Elsevier, vol. 62(C), pages 35-42.
    6. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    7. Jun Yu, 2014. "Optimal Asset-Liability Management for an Insurer Under Markov Regime Switching Jump-Diffusion Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 317-330, November.
    8. Ying Hu & Xiaomin Shi & Zuo Quan Xu, 2022. "Non-homogeneous stochastic LQ control with regime switching and random coefficients," Papers 2201.01433, arXiv.org, revised Jul 2023.
    9. Ryle S. Perera, 2020. "Provisions for bank deposit withdrawals and portfolio selection," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-32, March.
    10. Xie, Shuxiang, 2009. "Continuous-time mean-variance portfolio selection with liability and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 148-155, August.
    11. Chang, Hao, 2015. "Dynamic mean–variance portfolio selection with liability and stochastic interest rate," Economic Modelling, Elsevier, vol. 51(C), pages 172-182.
    12. Wei, Jiaqin & Wang, Tianxiao, 2017. "Time-consistent mean–variance asset–liability management with random coefficients," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 84-96.
    13. Xiangyu Cui & Xun Li & Duan Li, 2013. "Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection," Papers 1303.1064, arXiv.org.
    14. Li, Danping & Shen, Yang & Zeng, Yan, 2018. "Dynamic derivative-based investment strategy for mean–variance asset–liability management with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 72-86.
    15. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    16. Wong, K.C. & Yam, S.C.P. & Zeng, J., 2019. "Mean-risk portfolio management with bankruptcy prohibition," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 153-172.
    17. Wang, Ning & Zhang, Yumo, 2023. "Robust optimal asset-liability management with mispricing and stochastic factor market dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 251-273.
    18. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
    19. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.
    20. Qian Zhao & Jiaqin Wei & Rongming Wang, 2013. "Mean-Variance Asset-Liability Management with State-Dependent Risk Aversion," Papers 1304.7882, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:52:y:2013:i:1:p:6-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.