IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Continuous-time mean–variance asset–liability management with endogenous liabilities

Listed author(s):
  • Yao, Haixiang
  • Lai, Yongzeng
  • Li, Yong
Registered author(s):

    This paper investigates a continuous-time mean–variance asset–liability management problem with endogenous liabilities in a more general market where all the assets can be risky. Different from exogenous liabilities that cannot be controlled, the endogenous liabilities can be controlled by various financial instruments and investors’ decisions. For example, a company can raise fund by issuing different kinds of bonds. Types and quantities of the bonds are controlled by the company itself. Investors optimize allocation not only for their assets, but also for their liabilities under our model. This makes the analysis of the problem more challenging than in the setting based on exogenous liabilities. In this paper, we first prove the existence and uniqueness of the solution to the associated Riccati-type equation by using the Khatri–Rao product technique and the relevant stochastic control theory; we then derive closed form expressions of the efficient strategy and the mean–variance efficient frontier by using the Lagrange multiplier method and the Hamilton–Jacobi–Bellman equation approach, and we next discuss two degenerated cases; finally, we present some numerical examples to illustrate the results obtained in this paper.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712001151
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 52 (2013)
    Issue (Month): 1 ()
    Pages: 6-17

    as
    in new window

    Handle: RePEc:eee:insuma:v:52:y:2013:i:1:p:6-17
    DOI: 10.1016/j.insmatheco.2012.10.001
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
    2. Xie, Shuxiang, 2009. "Continuous-time mean-variance portfolio selection with liability and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 148-155, August.
    3. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
    4. Consiglio, Andrea & Cocco, Flavio & Zenios, Stavros A., 2008. "Asset and liability modelling for participating policies with guarantees," European Journal of Operational Research, Elsevier, vol. 186(1), pages 380-404, April.
    5. Ping Chen & Hailiang Yang, 2011. "Markowitz's Mean-Variance Asset-Liability Management with Regime Switching: A Multi-Period Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(1), pages 29-50.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
    7. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    8. Duan Li & Wan-Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406.
    9. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2006. "A path integral approach to asset-liability management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 404-416.
    10. Chen, Ping & Yang, Hailiang & Yin, George, 2008. "Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 456-465, December.
    11. Chiu, Mei Choi & Wong, Hoi Ying, 2011. "Mean-variance portfolio selection of cointegrated assets," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1369-1385, August.
    12. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    13. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous-Time Mean-Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:52:y:2013:i:1:p:6-17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.