IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v34y2010i1p59-68.html
   My bibliography  Save this article

Solving the incomplete markets model with aggregate uncertainty using parameterized cross-sectional distributions

Author

Listed:
  • Algan, Yann
  • Allais, Olivier
  • Den Haan, Wouter J.

Abstract

This note describes how the incomplete markets model with aggregate uncertainty in Den Haan et al. [Comparison of solutions to the incomplete markets model with aggregate uncertainty. Journal of Economic Dynamics and Control, this issue] is solved using standard quadrature and projection methods. This is made possible by linking the aggregate state variables to a parameterized density that describes the cross-sectional distribution. A simulation procedure is used to find the best shape of the density within the class of approximating densities considered. This note compares several simulation procedures in which there is--as in the model--no cross-sectional sampling variation.

Suggested Citation

  • Algan, Yann & Allais, Olivier & Den Haan, Wouter J., 2010. "Solving the incomplete markets model with aggregate uncertainty using parameterized cross-sectional distributions," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 59-68, January.
  • Handle: RePEc:eee:dyncon:v:34:y:2010:i:1:p:59-68
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(09)00144-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Den Haan, Wouter J. & Rendahl, Pontus, 2010. "Solving the incomplete markets model with aggregate uncertainty using explicit aggregation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 69-78, January.
    2. Algan, Yann & Allais, Olivier & Den Haan, Wouter J., 2008. "Solving heterogeneous-agent models with parameterized cross-sectional distributions," Journal of Economic Dynamics and Control, Elsevier, vol. 32(3), pages 875-908, March.
    3. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, January.
    4. Jonathan Heathcote, 2005. "Fiscal Policy with Heterogeneous Agents and Incomplete Markets," Review of Economic Studies, Oxford University Press, pages 161-188.
    5. Den Haan, Wouter J., 1997. "Solving Dynamic Models With Aggregate Shocks And Heterogeneous Agents," Macroeconomic Dynamics, Cambridge University Press, vol. 1(02), pages 355-386, June.
    6. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, pages 1179-1232.
    7. Per Krusell & Anthony A. Smith & Jr., 1998. "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 867-896, October.
    8. Algan, Yann & Allais, Olivier & Den Haan, Wouter J., 2008. "Solving heterogeneous-agent models with parameterized cross-sectional distributions," Journal of Economic Dynamics and Control, Elsevier, vol. 32(3), pages 875-908, March.
    9. Jose-Victor Rios-Rull, 1997. "Computation of equilibria in heterogeneous agent models," Staff Report 231, Federal Reserve Bank of Minneapolis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mordecai Kurz & Maurizio Motolese & Giulia Piccillo & Howei Wu, 2015. "Monetary Policy with Diverse Private Expectations," Discussion Papers 15-004, Stanford Institute for Economic Policy Research.
    2. Den Haan, Wouter J., 2010. "Assessing the accuracy of the aggregate law of motion in models with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 79-99, January.
    3. Carvalho, Vasco M & Grassi, Basile, 2015. "Large Firm Dynamics and the Business Cycle," CEPR Discussion Papers 10587, C.E.P.R. Discussion Papers.
    4. Michael C. Hatcher & Eric M. Scheffel, 2016. "Solving the Incomplete Markets Model in Parallel Using GPU Computing and the Krusell–Smith Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 569-591, December.
    5. Den Haan, Wouter J., 2010. "Comparison of solutions to the incomplete markets model with aggregate uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 4-27, January.
    6. Den Haan, Wouter & Rendahl, Pontus & Riegler, Markus, 2015. "Unemployment (Fears) and Deflationary Spirals," CEPR Discussion Papers 10814, C.E.P.R. Discussion Papers.
    7. Den Haan, Wouter J. & Rendahl, Pontus, 2010. "Solving the incomplete markets model with aggregate uncertainty using explicit aggregation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(1), pages 69-78, January.
    8. Andrei Jirnyi & Vadym Lepetyuk, 2011. "A reinforcement learning approach to solving incomplete market models with aggregate uncertainty," Working Papers. Serie AD 2011-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    9. Pichler, Paul, 2011. "Solving the multi-country Real Business Cycle model using a monomial rule Galerkin method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 240-251, February.

    More about this item

    Keywords

    Numerical solutions Projection methods Simulations;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:34:y:2010:i:1:p:59-68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.