IDEAS home Printed from
   My bibliography  Save this article

Flexible shrinkage in portfolio selection


  • Golosnoy, Vasyl
  • Okhrin, Yarema


How to quantify estimation risk is important in portfolio selection. For this purpose we derive the flexible shrinkage estimator for the optimal portfolio weights, which allows dynamic adjustments of model structure. Our estimator is based on grouping the assets in order to capture non-homogeneity of estimation risk. The assets are assigned to groups using a clustering procedure with the number of groups determined from the data. The proposed flexible shrinkage approach exhibits sound and robust performance compared to the popular portfolio selection alternatives.

Suggested Citation

  • Golosnoy, Vasyl & Okhrin, Yarema, 2009. "Flexible shrinkage in portfolio selection," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 317-328, February.
  • Handle: RePEc:eee:dyncon:v:33:y:2009:i:2:p:317-328

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zhenyu Wang, 2005. "A Shrinkage Approach to Model Uncertainty and Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 673-705.
    2. Wolfgang Hardle & Helmut Herwartz & Vladimir Spokoiny, 2003. "Time Inhomogeneous Multiple Volatility Modeling," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 55-95.
    3. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    4. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    5. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    6. Michael W. Brandt & Pedro Santa-Clara, 2006. "Dynamic Portfolio Selection by Augmentingthe Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    7. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    8. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    9. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 279-292, September.
    10. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    11. Vasyl Golosnoy & Yarema Okhrin, 2007. "Multivariate Shrinkage for Optimal Portfolio Weights," The European Journal of Finance, Taylor & Francis Journals, vol. 13(5), pages 441-458.
    12. N. T. Longford, 1999. "Multivariate shrinkage estimation of small area means and proportions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(2), pages 227-245.
    13. Duan Li & Wan-Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406.
    14. Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
    15. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    16. Martin R. Young & Peter J. Lenk, 1998. "Hierarchical Bayes Methods for Multifactor Model Estimation and Portfolio Selection," Management Science, INFORMS, vol. 44(11-Part-2), pages 111-124, November.
    17. Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Vasyl Golosnoy & Nestor Parolya, 2017. "‘To have what they are having’: portfolio choice for mimicking mean–variance savers," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1645-1653, November.
    2. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    3. repec:eee:finana:v:52:y:2017:i:c:p:240-251 is not listed on IDEAS
    4. Bajeux-Besnainou, Isabelle & Bandara, Wachindra & Bura, Efstathia, 2012. "A Krylov subspace approach to large portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1688-1699.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:33:y:2009:i:2:p:317-328. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.