IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v94y2016icp372-390.html
   My bibliography  Save this article

Multivariate Fay–Herriot models for small area estimation

Author

Listed:
  • Benavent, Roberto
  • Morales, Domingo

Abstract

Multivariate Fay–Herriot models for estimating small area indicators are introduced. Among the available procedures for fitting linear mixed models, the residual maximum likelihood (REML) is employed. The empirical best predictor (EBLUP) of the vector of area means is derived. An approximation to the matrix of mean squared crossed prediction errors (MSE) is given and four MSE estimators are proposed. The first MSE estimator is a plug-in version of the MSE approximation. The remaining MSE estimators combine parametric bootstrap with the analytic terms of the MSE approximation. Several simulation experiments are performed in order to assess the behavior of the multivariate EBLUP and for comparing the MSE estimators. The developed methodology and software are applied to data from the 2005 and 2006 Spanish living condition surveys. The target of the application is the estimation of poverty proportions and gaps at province level.

Suggested Citation

  • Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
  • Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:372-390
    DOI: 10.1016/j.csda.2015.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731500170X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marhuenda, Yolanda & Molina, Isabel & Morales, Domingo, 2013. "Small area estimation with spatio-temporal Fay–Herriot models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 308-325.
    2. Lynn M. R. Ybarra & Sharon L. Lohr, 2008. "Small area estimation when auxiliary information is measured with error," Biometrika, Biometrika Trust, vol. 95(4), pages 919-931.
    3. Danny Pfeffermann & Anna Sikov & Richard Tiller, 2014. "Rejoinder on: Single- and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 686-690, December.
    4. Jiang, Jiming & Nguyen, Thuan & Rao, J. Sunil, 2011. "Best Predictive Small Area Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 732-745.
    5. Gauri Datta & Tatsuya Kubokawa & Isabel Molina & J. Rao, 2011. "Estimation of mean squared error of model-based small area estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 367-388, August.
    6. G. Datta & M. Ghosh & R. Steorts & J. Maples, 2011. "Bayesian benchmarking with applications to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 574-588, November.
    7. W. R. Bell & G. S. Datta & M. Ghosh, 2013. "Benchmarking small area estimators," Biometrika, Biometrika Trust, vol. 100(1), pages 189-202.
    8. Danny Pfeffermann & Anna Sikov & Richard Tiller, 2014. "Single- and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 631-666, December.
    9. González-Manteiga, W. & Lombardi­a, M.J. & Molina, I. & Morales, D. & Santamari­a, L., 2008. "Analytic and bootstrap approximations of prediction errors under a multivariate Fay-Herriot model," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5242-5252, August.
    10. Esteban, M.D. & Morales, D. & Pérez, A. & Santamaría, L., 2012. "Small area estimation of poverty proportions under area-level time models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2840-2855.
    11. Malay Ghosh & Rebecca Steorts, 2013. "Two-stage benchmarking as applied to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 670-687, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2020. "A Fay–Herriot model when auxiliary variables are measured with error," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 166-195, March.
    2. Saurav Guha & Hukum Chandra, 2022. "Multivariate Small Area Modelling for Measuring Micro Level Earning Inequality: Evidence from Periodic Labour Force Survey of India," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 643-663, July.
    3. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    4. Yegnanew A. Shiferaw, 2023. "Mapping Disaggregate-Level Agricultural Households in South Africa Using a Hierarchical Bayes Small Area Estimation Approach," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    5. Bilton, Penny & Jones, Geoff & Ganesh, Siva & Haslett, Steve, 2017. "Classification trees for poverty mapping," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 53-66.
    6. Saurav Guha & Hukum Chandra, 2021. "Measuring and Mapping Disaggregate Level Disparities in Food Consumption and Nutritional Status via Multivariate Small Area Modelling," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 623-646, April.
    7. Armalia Desiyanti & Irlandia Ginanjar & Toni Toharudin, 2022. "Application of an Empirical Best Linear Unbiased Prediction Fay–Herriot (EBLUP-FH) Multivariate Method with Cluster Information to Estimate Average Household Expenditure," Mathematics, MDPI, vol. 11(1), pages 1-25, December.
    8. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2023. "Small area estimation of average compositions under multivariate nested error regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 651-676, June.
    9. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elaheh Torkashvand & Mohammad Jafari Jozani & Mahmoud Torabi, 2016. "Constrained Bayes estimation in small area models with functional measurement error," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 710-730, December.
    2. Roberto Benavent & Domingo Morales, 2021. "Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 195-222, March.
    3. Zhang Junni L. & Bryant John, 2020. "Fully Bayesian Benchmarking of Small Area Estimation Models," Journal of Official Statistics, Sciendo, vol. 36(1), pages 197-223, March.
    4. Rebecca Steorts & M. Ugarte, 2014. "Comments on: “Single and two-stage cross-sectional and time series benchmarking procedures for small area estimation”," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 680-685, December.
    5. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    6. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    7. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    8. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    9. Jan Pablo Burgard & Joscha Krause & Domingo Morales, 2022. "A measurement error Rao–Yu model for regional prevalence estimation over time using uncertain data obtained from dependent survey estimates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 204-234, March.
    10. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    11. Malay Ghosh & Tatsuya Kubokawa & Yuki Kawakubo, 2014. "Benchmarked Empirical Bayes Methods in Multiplicative Area-level Models with Risk Evaluation," CIRJE F-Series CIRJE-F-918, CIRJE, Faculty of Economics, University of Tokyo.
    12. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
    13. Szymkowiak Marcin & Młodak Andrzej & Wawrowski Łukasz, 2017. "Mapping Poverty at the Level of Subregions in Poland Using Indirect Estimation," Statistics in Transition New Series, Polish Statistical Association, vol. 18(4), pages 609-635, December.
    14. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    15. Ryan Janicki & Andrew Vesper, 2017. "Benchmarking techniques for reconciling Bayesian small area models at distinct geographic levels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 557-581, November.
    16. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.
    17. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2020. "A Fay–Herriot model when auxiliary variables are measured with error," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 166-195, March.
    18. Marcin Szymkowiak & Andrzej Młodak & Łukasz Wawrowski, 2017. "Mapping Poverty At The Level Of Subregions In Poland Using Indirect Estimation," Statistics in Transition New Series, Polish Statistical Association, vol. 18(4), pages 609-635, December.
    19. Rebecca C. Steorts & Timo Schmid & Nikos Tzavidis, 2020. "Smoothing and Benchmarking for Small Area Estimation," International Statistical Review, International Statistical Institute, vol. 88(3), pages 580-598, December.
    20. Marius Stefan & Michael Hidiroglou, 2021. "Benchmarked Estimators for a Small Area Mean Under a Onefold Nested Regression Model," International Statistical Review, International Statistical Institute, vol. 89(1), pages 108-131, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:372-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.