IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i4p919-931.html
   My bibliography  Save this article

Small area estimation when auxiliary information is measured with error

Author

Listed:
  • Lynn M. R. Ybarra
  • Sharon L. Lohr

Abstract

Small area estimation methods typically combine direct estimates from a survey with predictions from a model in order to obtain estimates of population quantities with reduced mean squared error. When the auxiliary information used in the model is measured with error, using a small area estimator such as the Fay--Herriot estimator while ignoring measurement error may be worse than simply using the direct estimator. We propose a new small area estimator that accounts for sampling variability in the auxiliary information, and derive its properties, in particular showing that it is approximately unbiased. The estimator is applied to predict quantities measured in the U.S. National Health and Nutrition Examination Survey, with auxiliary information from the U.S. National Health Interview Survey. Copyright 2008, Oxford University Press.

Suggested Citation

  • Lynn M. R. Ybarra & Sharon L. Lohr, 2008. "Small area estimation when auxiliary information is measured with error," Biometrika, Biometrika Trust, vol. 95(4), pages 919-931.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:919-931
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn048
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:919-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.