IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v5y2024i1d10.1007_s43069-023-00288-3.html
   My bibliography  Save this article

Temporal-Like Bivariate Fay-Herriot Model: Leveraging Past Responses and Advanced Preprocessing for Enhanced Small Area Estimation of Growing Stock Volume

Author

Listed:
  • Aristeidis Georgakis

    (Aristotle University of Thessaloniki)

  • Vasileios E. Papageorgiou

    (Aristotle University of Thessaloniki)

  • Demetrios Gatziolis

    (USDA Forest Service, Pacific Northwest Research Station)

  • Georgios Stamatellos

    (Aristotle University of Thessaloniki)

Abstract

Forest inventories are crucial for effective ecosystem management but often lack precision for smaller geographical units due to limited sample sizes. This study introduces an enhanced temporal-like bivariate Fay-Herriot model, improving upon its univariate counterpart. The model incorporates field data and auxiliary data, including canopy height metrics from WorldView stereo-imagery and past census data, sourced from the University Forest of Pertouli in Central Greece. The model aims to estimate the growing stock volume for 2008 and 2018, focusing on enhancing the precision of the 2018 estimates. The 2008 dependent variable is used as auxiliary information by the model for more reliable 2018 small area estimates. A novel preprocessing pipeline is also introduced, which includes outlier identification, cluster analysis, and variance smoothing. Compared to direct estimates and the standard univariate Fay-Herriot model, our bivariate approach shows a percentage variance reduction of 96.58% and 13.52%, respectively. The methodology not only offers more reliable estimates with reduced variance and bias but also contributes to more accurate decision-making for sustainable forest management.

Suggested Citation

  • Aristeidis Georgakis & Vasileios E. Papageorgiou & Demetrios Gatziolis & Georgios Stamatellos, 2024. "Temporal-Like Bivariate Fay-Herriot Model: Leveraging Past Responses and Advanced Preprocessing for Enhanced Small Area Estimation of Growing Stock Volume," SN Operations Research Forum, Springer, vol. 5(1), pages 1-28, March.
  • Handle: RePEc:spr:snopef:v:5:y:2024:i:1:d:10.1007_s43069-023-00288-3
    DOI: 10.1007/s43069-023-00288-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00288-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00288-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marhuenda, Yolanda & Molina, Isabel & Morales, Domingo, 2013. "Small area estimation with spatio-temporal Fay–Herriot models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 308-325.
    2. Elaheh Torkashvand & Mohammad Jafari Jozani & Mahmoud Torabi, 2017. "Clustering in small area estimation with area level linear mixed models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1253-1279, October.
    3. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    4. F. Mauro & I. Molina & A. García‐Abril & R. Valbuena & E. Ayuga‐Téllez, 2016. "Remote sensing estimates and measures of uncertainty for forest variables at different aggregation levels," Environmetrics, John Wiley & Sons, Ltd., vol. 27(4), pages 225-238, June.
    5. Hao Sun & Emily Berg & Zhengyuan Zhu, 2022. "Bivariate small‐area estimation for binary and gaussian variables based on a conditionally specified model," Biometrics, The International Biometric Society, vol. 78(4), pages 1555-1565, December.
    6. Innocent Ngaruye & Joseph Nzabanita & Dietrich von Rosen & Martin Singull, 2017. "Small area estimation under a multivariate linear model for repeated measures data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(21), pages 10835-10850, November.
    7. Roberto Benavent & Domingo Morales, 2021. "Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 195-222, March.
    8. Francisco Mauro & Vicente J Monleon & Hailemariam Temesgen & Kevin R Ford, 2017. "Analysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary information," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-14, December.
    9. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2023. "Small area estimation of average compositions under multivariate nested error regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 651-676, June.
    2. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    3. María Dolores Esteban & María José Lombardía & Esther López‐Vizcaíno & Domingo Morales & Agustín Pérez, 2022. "Empirical best prediction of small area bivariate parameters," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1699-1727, December.
    4. Laura Marcis & Domingo Morales & Maria Chiara Pagliarella & Renato Salvatore, 2023. "Three-fold Fay–Herriot model for small area estimation and its diagnostics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1563-1609, December.
    5. Jan Pablo Burgard & Joscha Krause & Domingo Morales, 2022. "A measurement error Rao–Yu model for regional prevalence estimation over time using uncertain data obtained from dependent survey estimates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 204-234, March.
    6. María Bugallo & Domingo Morales & María Dolores Esteban & Maria Chiara Pagliarella, 2024. "Model-Based Estimation of Small Area Dissimilarity Indexes: An Application to Sex Occupational Segregation in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 174(2), pages 473-501, September.
    7. Anna Sikov & José Cerda-Hernandez, 2024. "Prediction in non-sampled areas under spatial small area models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1079-1116, September.
    8. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2020. "A Fay–Herriot model when auxiliary variables are measured with error," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 166-195, March.
    9. Peralta,Isabel Molina, 2024. "Frontiers in Small Area Estimation Research: Application to Welfare Indicators," Policy Research Working Paper Series 10828, The World Bank.
    10. Saurav Guha & Hukum Chandra, 2021. "Measuring and Mapping Disaggregate Level Disparities in Food Consumption and Nutritional Status via Multivariate Small Area Modelling," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 623-646, April.
    11. Armalia Desiyanti & Irlandia Ginanjar & Toni Toharudin, 2022. "Application of an Empirical Best Linear Unbiased Prediction Fay–Herriot (EBLUP-FH) Multivariate Method with Cluster Information to Estimate Average Household Expenditure," Mathematics, MDPI, vol. 11(1), pages 1-25, December.
    12. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    13. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    14. Iacus Stefano M. & Salini Silvia & Siletti Elena & Porro Giuseppe, 2020. "Controlling for Selection Bias in Social Media Indicators through Official Statistics: a Proposal," Journal of Official Statistics, Sciendo, vol. 36(2), pages 315-338, June.
    15. Tomasz Ża̧dło, 2015. "On longitudinal moving average model for prediction of subpopulation total," Statistical Papers, Springer, vol. 56(3), pages 749-771, August.
    16. Shiferaw, Yegnanew A., 2024. "A spatial analysis of the digital gender gap in South Africa: Are there any fundamental differences?," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    17. Francisco Mauro & Vicente J Monleon & Hailemariam Temesgen & Kevin R Ford, 2017. "Analysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary information," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-14, December.
    18. Sumonkanti Das & Syed Abul Basher & Bernard Baffour & Penny Godwin & Alice Richardson & Salim Rashid, 2024. "Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(4), pages 1-37, December.
    19. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    20. Angelo Moretti & Natalie Shlomo & Joseph W. Sakshaug, 2020. "Multivariate Small Area Estimation of Multidimensional Latent Economic Well‐being Indicators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:5:y:2024:i:1:d:10.1007_s43069-023-00288-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.