IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model

  • Yu, Lili
  • Peace, Karl E.
Registered author(s):

    The accelerated failure time model provides direct physical interpretation for right censored data. However, the homogeneity of variance assumption of the log transformed data does not always hold. In this paper, we propose using a generalized linear model for right censored data in which we relax the homogeneity assumption. A new semiparametric analysis method is proposed for this model. The method uses nonparametric quasi-likelihood in which the variance function is estimated by polynomial spline regression. This is based on squared residuals from an initial model fit. The rate of convergence of the nonparametric variance function estimator is derived. It is shown that the regression coefficient estimators are asymptotically normally distributed. Simulations show that for finite samples the proposed nonparametric quasi-likelihood method performs well. The new method is illustrated with one dataset.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 9 ()
    Pages: 2675-2687

    in new window

    Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2675-2687
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2675-2687. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.