IDEAS home Printed from
   My bibliography  Save this article

Polynomial Spline Estimation for a Generalized Additive Coefficient Model




We study a semiparametric generalized additive coefficient model (GACM), in which linear predictors in the conventional generalized linear models are generalized to unknown functions depending on certain covariates, and approximate the non-parametric functions by using polynomial spline. The asymptotic expansion with optimal rates of convergence for the estimators of the non-parametric part is established. Semiparametric generalized likelihood ratio test is also proposed to check if a non-parametric coefficient can be simplified as a parametric one. A conditional bootstrap version is suggested to approximate the distribution of the test under the null hypothesis. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed methods. We further apply the proposed model and methods to a data set from a human visceral Leishmaniasis study conducted in Brazil from 1994 to 1997. Numerical results outperform the traditional generalized linear model and the proposed GACM is preferable. Copyright (c) 2009 Board of the Foundation of the Scandinavian Journal of Statistics.

Suggested Citation

  • Lan Xue & Hua Liang, 2010. "Polynomial Spline Estimation for a Generalized Additive Coefficient Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 26-46.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:1:p:26-46

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Huang, Jianhua Z., 1998. "Functional ANOVA Models for Generalized Regression," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 49-71, October.
    2. Jianhua Z. Huang & Linxu Liu, 2006. "Polynomial Spline Estimation and Inference of Proportional Hazards Regression Models with Flexible Relative Risk Form," Biometrics, The International Biometric Society, vol. 62(3), pages 793-802, September.
    3. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
    2. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    3. repec:spr:metrik:v:81:y:2018:i:1:d:10.1007_s00184-017-0631-2 is not listed on IDEAS
    4. repec:spr:aistmt:v:69:y:2017:i:5:d:10.1007_s10463-016-0575-8 is not listed on IDEAS
    5. Shujie Ma & Peter X.-K. Song, 2015. "Varying Index Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 341-356, March.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:1:p:26-46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.