IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i2d10.1007_s00180-024-01524-y.html
   My bibliography  Save this article

Robust variable selection for additive coefficient models

Author

Listed:
  • Hang Zou

    (Guangdong University of Foreign Studies)

  • Xiaowen Huang

    (Jinan University)

  • Yunlu Jiang

    (Jinan University)

Abstract

Additive coefficient models generalize linear regression models by assuming that the relationship between the response and some covariates is linear, while their regression coefficients are additive functions. Because of its advantages in dealing with the “curse of dimensionality”, additive coefficient models gain a lot of attention. The commonly used estimation methods for additive coefficient models are not robust against high leverage points. To circumvent this difficulty, we develop a robust variable selection procedure based on the exponential squared loss function and group penalty for the additive coefficient models, which can tackle outliers in the response and covariates simultaneously. Under some regularity conditions, we show that the oracle estimator is a local solution of the proposed method. Furthermore, we apply the local linear approximation and minorization-maximization algorithm for the implementation of the proposed estimator. Meanwhile, we propose a data-driven procedure to select the tuning parameters. Simulation studies and an application to a plasma beta-carotene level data set illustrate that the proposed method can offer more reliable results than other existing methods in contamination schemes.

Suggested Citation

  • Hang Zou & Xiaowen Huang & Yunlu Jiang, 2025. "Robust variable selection for additive coefficient models," Computational Statistics, Springer, vol. 40(2), pages 977-997, February.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01524-y
    DOI: 10.1007/s00180-024-01524-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01524-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01524-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Yunlu Jiang, 2015. "Robust estimation in partially linear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2497-2508, November.
    3. Weixin Yao & Bruce Lindsay & Runze Li, 2012. "Local modal regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 647-663.
    4. Weihua Zhao & Riquan Zhang & Jicai Liu & Yazhao Lv, 2014. "Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 165-191, February.
    5. Xiuli Wang & Jingchang Shao & Jingjing Wu & Qiang Zhao, 2023. "Robust variable selection with exponential squared loss for partially linear spatial autoregressive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(6), pages 949-977, December.
    6. Lan Xue & Hua Liang, 2010. "Polynomial Spline Estimation for a Generalized Additive Coefficient Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 26-46, March.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Liu, Rong & Yang, Lijian, 2010. "Spline-Backfitted Kernel Smoothing Of Additive Coefficient Model," Econometric Theory, Cambridge University Press, vol. 26(1), pages 29-59, February.
    9. Cui, Xia & Zhao, Weihua & Lian, Heng & Liang, Hua, 2019. "Pursuit of dynamic structure in quantile additive models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 42-60.
    10. Canhong Wen & Xueqin Wang & Shaoli Wang, 2015. "Laplace Error Penalty-based Variable Selection in High Dimension," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 685-700, September.
    11. Fan, Zengyan & Lian, Heng, 2018. "Quantile regression for additive coefficient models in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 54-64.
    12. Wang, Yue & Zhou, Yan & Li, Rui & Lian, Heng, 2022. "Sparse high-dimensional semi-nonparametric quantile regression in a reproducing kernel Hilbert space," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    13. Yunlu Jiang & Guo-Liang Tian & Yu Fei, 2019. "A robust and efficient estimation method for partially nonlinear models via a new MM algorithm," Statistical Papers, Springer, vol. 60(6), pages 2063-2085, December.
    14. Shuping Jiang & Lan Xue, 2015. "Globally consistent model selection in semi-parametric additive coefficient models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 532-551, December.
    15. Guo, Jie & Tang, Manlai & Tian, Maozai & Zhu, Kai, 2013. "Variable selection in high-dimensional partially linear additive models for composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 56-67.
    16. Xueqin Wang & Yunlu Jiang & Mian Huang & Heping Zhang, 2013. "Robust Variable Selection With Exponential Squared Loss," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 632-643, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    2. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    3. Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    4. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    5. Lv, Zhike & Zhu, Huiming & Yu, Keming, 2014. "Robust variable selection for nonlinear models with diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 90-97.
    6. Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
    7. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    8. Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
    9. Xiuli Wang & Jingchang Shao & Jingjing Wu & Qiang Zhao, 2023. "Robust variable selection with exponential squared loss for partially linear spatial autoregressive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(6), pages 949-977, December.
    10. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    11. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    12. Wentao Wang & Jiaxuan Liang & Rong Liu & Yunquan Song & Min Zhang, 2022. "A Robust Variable Selection Method for Sparse Online Regression via the Elastic Net Penalty," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    13. Fan, Zengyan & Lian, Heng, 2018. "Quantile regression for additive coefficient models in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 54-64.
    14. Na You & Shun He & Xueqin Wang & Junxian Zhu & Heping Zhang, 2018. "Subtype classification and heterogeneous prognosis model construction in precision medicine," Biometrics, The International Biometric Society, vol. 74(3), pages 814-822, September.
    15. Yunquan Song & Zitong Li & Minglu Fang, 2022. "Robust Variable Selection Based on Penalized Composite Quantile Regression for High-Dimensional Single-Index Models," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    16. Yang, Jing & Yang, Hu, 2016. "A robust penalized estimation for identification in semiparametric additive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 268-277.
    17. Hongyu An & Boping Tian, 2024. "Varying Index Coefficient Model for Tail Index Regression," Mathematics, MDPI, vol. 12(13), pages 1-35, June.
    18. Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
    19. Ullah, Aman & Wang, Tao & Yao, Weixin, 2023. "Semiparametric partially linear varying coefficient modal regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 1001-1026.
    20. Yoshida, Takuma, 2018. "Semiparametric method for model structure discovery in additive regression models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 124-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01524-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.