IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v133y2019icp257-276.html
   My bibliography  Save this article

Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection

Author

Listed:
  • Wang, Kangning
  • Li, Shaomin
  • Sun, Xiaofei
  • Lin, Lu

Abstract

Modal regression is a good alternative of the mean regression, because of its merits of both robustness and high inference efficiency. This paper is concerned with modal regression based statistical inference for semivarying coefficient models with longitudinal data, which include modal regression generalized estimating equations, modal regression empirical likelihood inference procedure for the parametric component and smooth- threshold modal regression generalized estimating equations for variable selection. These methods can incorporate the correlation structure of the longitudinal data and inherit the robustness and efficiency superiorities of the modal regression by choosing an appropriate data adaptive tuning parameter. Under mild conditions, the large sample theoretical properties are established. Simulation studies and real data analysis are also included to illustrate the finite sample performance.

Suggested Citation

  • Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
  • Handle: RePEc:eee:csdana:v:133:y:2019:i:c:p:257-276
    DOI: 10.1016/j.csda.2018.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731830255X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suojin Wang & Lianfen Qian & Raymond J. Carroll, 2010. "Generalized empirical likelihood methods for analyzing longitudinal data," Biometrika, Biometrika Trust, vol. 97(1), pages 79-93.
    2. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    3. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    4. Weixin Yao & Bruce Lindsay & Runze Li, 2012. "Local modal regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 647-663.
    5. Weihua Zhao & Riquan Zhang & Jicai Liu & Yazhao Lv, 2014. "Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 165-191, February.
    6. He, Xuming & Fung, Wing K. & Zhu, Zhongyi, 2005. "Robust Estimation in Generalized Partial Linear Models for Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1176-1184, December.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Weixin Yao & Longhai Li, 2014. "A New Regression Model: Modal Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 656-671, September.
    9. Nian-Sheng Tang & Pu-Ying Zhao, 2013. "Empirical likelihood semiparametric nonlinear regression analysis for longitudinal data with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 639-665, August.
    10. Kangning Wang & Lu Lin, 2015. "Variable Selection in Semiparametric Quantile Modeling for Longitudinal Data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(11), pages 2243-2266, June.
    11. Qin, Guoyou & Bai, Yang & Zhu, Zhongyi, 2012. "Robust empirical likelihood inference for generalized partial linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 32-44.
    12. Peixin Zhao & Liugen Xue, 2009. "Empirical likelihood inferences for semiparametric varying-coefficient partially linear errors-in-variables models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 907-923.
    13. Xue, Liugen & Zhu, Lixing, 2007. "Empirical Likelihood for a Varying Coefficient Model With Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 642-654, June.
    14. Hu, Xuemei & Wang, Zhizhong & Zhao, Zhiwei, 2009. "Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1044-1052, April.
    15. Riquan Zhang & Weihua Zhao & Jicai Liu, 2013. "Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 523-544, June.
    16. Li, Gaorong & Lin, Lu & Zhu, Lixing, 2012. "Empirical likelihood for a varying coefficient partially linear model with diverging number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 85-111.
    17. Fan, Yali & Qin, Guoyou & Zhu, Zhongyi, 2012. "Variable selection in robust regression models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 156-167.
    18. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    19. Qin, Guoyou & Zhu, Zhongyi, 2007. "Robust estimation in generalized semiparametric mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1658-1683, September.
    20. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    21. Yang, Hu & Li, Tingting, 2010. "Empirical likelihood for semiparametric varying coefficient partially linear models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 80(2), pages 111-121, January.
    22. Lan Wang & Jianhui Zhou & Annie Qu, 2012. "Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 68(2), pages 353-360, June.
    23. Jin Qiu & Lang Wu, 2015. "A moving blocks empirical likelihood method for longitudinal data," Biometrics, The International Biometric Society, vol. 71(3), pages 616-624, September.
    24. Liugen Xue & Lixing Zhu, 2007. "Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data," Biometrika, Biometrika Trust, vol. 94(4), pages 921-937.
    25. You-Gan Wang & Xu Lin & Min Zhu, 2005. "Robust Estimating Functions and Bias Correction for Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 61(3), pages 684-691, September.
    26. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    27. Liu, Jicai & Zhang, Riquan & Zhao, Weihua & Lv, Yazhao, 2013. "A robust and efficient estimation method for single index models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 226-238.
    28. Masao Ueki, 2009. "A note on automatic variable selection using smooth-threshold estimating equations," Biometrika, Biometrika Trust, vol. 96(4), pages 1005-1011.
    29. Cheng Yong Tang & Chenlei Leng, 2011. "Empirical likelihood and quantile regression in longitudinal data analysis," Biometrika, Biometrika Trust, vol. 98(4), pages 1001-1006.
    30. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    31. You, Jinhong & Zhou, Yong, 2006. "Empirical likelihood for semiparametric varying-coefficient partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 412-422, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
    2. Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    3. Shaomin Li & Kangning Wang & Yong Xu, 2023. "Robust estimation for nonrandomly distributed data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 493-509, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    2. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    3. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
    4. Kangning Wang & Mengjie Hao & Xiaofei Sun, 2021. "Robust and efficient estimating equations for longitudinal data partial linear models and its applications," Statistical Papers, Springer, vol. 62(5), pages 2147-2168, October.
    5. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
    6. Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    7. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
    8. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    9. Lv, Zhike & Zhu, Huiming & Yu, Keming, 2014. "Robust variable selection for nonlinear models with diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 90-97.
    10. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    11. Kangning Wang & Xiaofei Sun, 2020. "Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data," Statistical Papers, Springer, vol. 61(3), pages 967-995, June.
    12. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    13. Peixin Zhao & Liugen Xue, 2012. "Variable selection in semiparametric regression analysis for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 213-231, February.
    14. Ullah, Aman & Wang, Tao & Yao, Weixin, 2023. "Semiparametric partially linear varying coefficient modal regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 1001-1026.
    15. Peixin Zhao & Liugen Xue, 2011. "Variable selection for varying coefficient models with measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 231-245, September.
    16. Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
    17. Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
    18. Bang-Qiang He & Xing-Jian Hong & Guo-Liang Fan, 2020. "Penalized empirical likelihood for partially linear errors-in-variables panel data models with fixed effects," Statistical Papers, Springer, vol. 61(6), pages 2351-2381, December.
    19. Tian, Ruiqin & Xue, Liugen & Xu, Dengke, 2016. "Automatic variable selection for varying coefficient models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 84-90.
    20. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:133:y:2019:i:c:p:257-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.