IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v65y2013icp56-67.html
   My bibliography  Save this article

Variable selection in high-dimensional partially linear additive models for composite quantile regression

Author

Listed:
  • Guo, Jie
  • Tang, Manlai
  • Tian, Maozai
  • Zhu, Kai

Abstract

A new estimation procedure based on the composite quantile regression is proposed for the semiparametric additive partial linear models, of which the nonparametric components are approximated by polynomial splines. The proposed estimation method can simultaneously estimate both the parametric regression coefficients and nonparametric components without any specification of the error distributions. The proposed estimation method is empirically shown to be much more efficient than the popular least-squares-based estimation method for non-normal random errors, especially for Cauchy error, and almost as efficient for normal random errors. To achieve sparsity in high-dimensional and sparse additive partial linear models, of which the number of linear covariates is much larger than the sample size but that of significant covariates is small relative to the sample size, a variable selection procedure based on adaptive Lasso is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property, and is much superior to the adaptive Lasso penalized least-squares-based method regardless of the random error distributions. In particular, two kinds of weights in the penalty are considered, namely the composite quantile regression estimates and Lasso penalized composite quantile regression estimates. Both types of weights perform very well with the latter performing especially well in terms of precisely selecting significant variables. The simulation results are consistent with the theoretical properties. A real data example is used to illustrate the application of the proposed methods.

Suggested Citation

  • Guo, Jie & Tang, Manlai & Tian, Maozai & Zhu, Kai, 2013. "Variable selection in high-dimensional partially linear additive models for composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 56-67.
  • Handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:56-67
    DOI: 10.1016/j.csda.2013.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001199
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    2. Du, Pang & Cheng, Guang & Liang, Hua, 2012. "Semiparametric regression models with additive nonparametric components and high dimensional parametric components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2006-2017.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    5. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    6. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    7. Hua Liang & Sally W. Thurston & David Ruppert & Tatiyana Apanasovich & Russ Hauser, 2008. "Additive partial linear models with measurement errors," Biometrika, Biometrika Trust, vol. 95(3), pages 667-678.
    8. Opsomer, Jan & Ruppert, David, 1997. "Fitting a Bivariate Additive Model by Local Polynomial Regression," Staff General Research Papers Archive 1071, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boente, Graciela & Martínez, Alejandra Mercedes, 2023. "A robust spline approach in partially linear additive models," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    2. Wang, Weiwei & Wu, Xianyi & Zhao, Xiaobing & Zhou, Xian, 2018. "Robust variable selection of joint frailty model for panel count data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 60-78.
    3. Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
    4. Hu Yang & Huilan Liu, 2016. "Penalized weighted composite quantile estimators with missing covariates," Statistical Papers, Springer, vol. 57(1), pages 69-88, March.
    5. Chaohui Guo & Hu Yang & Jing Lv, 2017. "Robust variable selection in high-dimensional varying coefficient models based on weighted composite quantile regression," Statistical Papers, Springer, vol. 58(4), pages 1009-1033, December.
    6. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2014. "Quantile regression and variable selection for the single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1565-1577, July.
    7. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    8. Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.
    9. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    10. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    11. Feng, Xingdong & Liu, Qiaochu & Wang, Caixing, 2023. "A lack-of-fit test for quantile regression process models," Statistics & Probability Letters, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    2. Li, Xinyi & Wang, Li & Nettleton, Dan, 2019. "Sparse model identification and learning for ultra-high-dimensional additive partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 204-228.
    3. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    4. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    5. Heng Lian, 2012. "Variable selection in high-dimensional partly linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 825-839, December.
    6. Lin, Hongmei & Lian, Heng & Liang, Hua, 2019. "Rank reduction for high-dimensional generalized additive models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 672-684.
    7. Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
    8. Kaixu Yang & Tapabrata Maiti, 2022. "Ultrahigh‐dimensional generalized additive model: Unified theory and methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 917-942, September.
    9. Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.
    10. Hu, Yuao & Lian, Heng, 2013. "Variable selection in a partially linear proportional hazards model with a diverging dimensionality," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 61-69.
    11. Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
    12. Lian, Heng, 2012. "A note on the consistency of Schwarz’s criterion in linear quantile regression with the SCAD penalty," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1224-1228.
    13. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    14. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    15. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.
    16. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    17. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    18. Xiaotong Shen & Wei Pan & Yunzhang Zhu & Hui Zhou, 2013. "On constrained and regularized high-dimensional regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 807-832, October.
    19. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    20. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:56-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.