IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i11p2497-2508.html
   My bibliography  Save this article

Robust estimation in partially linear regression models

Author

Listed:
  • Yunlu Jiang

Abstract

A new class of robust estimators via the exponential squared loss function with a tuning parameter are presented for the partially linear regression models. Under some conditions, we show that our proposed estimators for the regression parameter can achieve the highest asymptotic breakdown point of . In addition, we propose the data-driven procedure to choose the tuning parameter. Simulation studies are conducted to compare the performances of the proposed method with the existing methods in terms of the bias, standard deviation (Sd) as well as the mean-squared errors (MSE). The results show that our proposed method has smaller Sd and MSE than the existing methods when there are outliers in the dataset. Finally, we apply the proposed method to analyze the Ragweed Pollen Level data and the salinity data, and the results reveal that our method performs better than the existing methods.

Suggested Citation

  • Yunlu Jiang, 2015. "Robust estimation in partially linear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2497-2508, November.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:11:p:2497-2508
    DOI: 10.1080/02664763.2015.1043862
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1043862
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1043862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton, Scott A. & Truong, Young K., 1997. "Local Linear Estimation in Partly Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 1-19, January.
    2. Chang, Xiao-Wen & Qu, Leming, 2004. "Wavelet estimation of partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 31-48, August.
    3. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    4. Croux, Christophe & Flandre, Cécile & Haesbroeck, Gentiane, 2002. "The breakdown behavior of the maximum likelihood estimator in the logistic regression model," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 377-386, December.
    5. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    7. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    8. Xuming He, 2002. "Estimation in a semiparametric model for longitudinal data with unspecified dependence structure," Biometrika, Biometrika Trust, vol. 89(3), pages 579-590, August.
    9. Xueqin Wang & Yunlu Jiang & Mian Huang & Heping Zhang, 2013. "Robust Variable Selection With Exponential Squared Loss," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 632-643, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunlu Jiang & Guo-Liang Tian & Yu Fei, 2019. "A robust and efficient estimation method for partially nonlinear models via a new MM algorithm," Statistical Papers, Springer, vol. 60(6), pages 2063-2085, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Liu, Jialuo & Chu, Tingjin & Zhu, Jun & Wang, Haonan, 2021. "Semiparametric method and theory for continuously indexed spatio-temporal processes," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    3. Sang, Peijun & Lockhart, Richard A. & Cao, Jiguo, 2018. "Sparse estimation for functional semiparametric additive models," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 105-118.
    4. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    5. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    6. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    7. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    8. Shang, Suoping & Zou, Changliang & Wang, Zhaojun, 2012. "Local Walsh-average regression for semiparametric varying-coefficient models," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1815-1822.
    9. Boente, Graciela & Martínez, Alejandra Mercedes, 2023. "A robust spline approach in partially linear additive models," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    10. Boente, Graciela & Salibian-Barrera, Matías & Vena, Pablo, 2020. "Robust estimation for semi-functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    11. Yunlu Jiang & Guo-Liang Tian & Yu Fei, 2019. "A robust and efficient estimation method for partially nonlinear models via a new MM algorithm," Statistical Papers, Springer, vol. 60(6), pages 2063-2085, December.
    12. Boente, Graciela & Rodriguez, Daniela, 2010. "Robust inference in generalized partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2942-2966, December.
    13. Bianco, Ana M. & Boente, Graciela & González-Manteiga, Wenceslao & Pérez-González, Ana, 2015. "Robust inference in partially linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 88-98.
    14. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    15. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    16. Cui, Xia & Zhao, Weihua & Lian, Heng & Liang, Hua, 2019. "Pursuit of dynamic structure in quantile additive models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 42-60.
    17. Feng Li & Lu Lin & Yuxia Su, 2013. "Variable selection and parameter estimation for partially linear models via Dantzig selector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 225-238, February.
    18. Bianco, Ana M. & Spano, Paula M., 2017. "Robust estimation in partially linear errors-in-variables models," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 46-64.
    19. Liang, Hua, 2006. "Estimation in partially linear models and numerical comparisons," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 675-687, February.
    20. Ana M. Bianco & Graciela Boente & Wenceslao González-Manteiga & Ana Pérez-González, 2019. "Plug-in marginal estimation under a general regression model with missing responses and covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 106-146, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:11:p:2497-2508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.