IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i10p1815-1822.html
   My bibliography  Save this article

Local Walsh-average regression for semiparametric varying-coefficient models

Author

Listed:
  • Shang, Suoping
  • Zou, Changliang
  • Wang, Zhaojun

Abstract

This work is concerned with robust estimation in a semiparametric varying-coefficient partially linear model when the underlying error distribution deviates from a normal distribution. We develop a robust estimator by minimizing a locally Walsh-average-based loss function. We show theoretically that the proposed estimator is highly efficient across a wide spectrum of distributions. Its asymptotic relative efficiency with respect to the least-squares-based method is closely related to that of the signed-rank Wilcoxon test in comparison with the t-test. Both the theoretical and the numerical results demonstrate that the performance of the new approach is at least comparable to those of existing works.

Suggested Citation

  • Shang, Suoping & Zou, Changliang & Wang, Zhaojun, 2012. "Local Walsh-average regression for semiparametric varying-coefficient models," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1815-1822.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1815-1822 DOI: 10.1016/j.spl.2012.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002131
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, December.
    2. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    3. Zhang, Wenyang & Lee, Sik-Yum, 2000. "Variable Bandwidth Selection in Varying-Coefficient Models," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 116-134, July.
    4. Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69.
    5. Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Local Walsh-average regression," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 36-48.
    6. Wang, Lan & Kai, Bo & Li, Runze, 2009. "Local Rank Inference for Varying Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1631-1645.
    7. Zhang, Wenyang & Lee, Sik-Yum & Song, Xinyuan, 2002. "Local Polynomial Fitting in Semivarying Coefficient Model," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 166-188, July.
    8. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1815-1822. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.