IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Empirical likelihood inference for the accelerated failure time model

Listed author(s):
  • Zhao, Yichuan
Registered author(s):

    Accelerated failure time (AFT) models are useful regression tools for studying the association between a survival time and covariates. Semiparametric inference procedures have been proposed in an extensive literature. Among these, use of an estimating equation which is monotone in the regression parameter and has some excellent properties was proposed by Fygenson and Ritov (1994). However, there is a serious under-coverage problem for small sample sizes. In this paper, we derive the limiting distribution of the empirical log-likelihood ratio for the regression parameter on the basis of the monotone estimating equations. Furthermore, the empirical likelihood (EL) confidence intervals/regions for the regression parameter are obtained. We conduct a simulation study in order to compare the proposed EL method with the normal approximation method. The simulation results suggest that the empirical likelihood based method outperforms the normal approximation based method in terms of coverage probability. Thus, the proposed EL method overcomes the under-coverage problem of the normal approximation method.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 81 (2011)
    Issue (Month): 5 (May)
    Pages: 603-610

    in new window

    Handle: RePEc:eee:stapro:v:81:y:2011:i:5:p:603-610
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Zhou, Mai & Li, Gang, 2008. "Empirical likelihood analysis of the Buckley-James estimator," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 649-664, April.
    2. Lai, Tze Leung & Ying, Zhiliang, 1992. "Linear rank statistics in regression analysis with censored or truncated data," Journal of Multivariate Analysis, Elsevier, vol. 40(1), pages 13-45, January.
    3. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
    4. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2008. "Empirical likelihood for non-degenerate U-statistics," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 599-607, April.
    5. Gengsheng Qin, 2001. "Empirical Likelihood for Censored Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(4), pages 661-673.
    6. Mai Zhou, 2005. "Empirical likelihood analysis of the rank estimator for the censored accelerated failure time model," Biometrika, Biometrika Trust, vol. 92(2), pages 492-498, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:5:p:603-610. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.