IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925006051.html
   My bibliography  Save this article

Expressway decarbonization strategy assessment: An integrated system dynamics and multi-agent simulation approach

Author

Listed:
  • Tang, Wei
  • Liu, Yi
  • Feng, Chi
  • Mei, Zhenyu

Abstract

Road transport significantly contributes to global carbon emissions, with expressways playing a key role due to high capacity and truck traffic. However, research specifically addressing expressway carbon emissions remains limited. This study introduces a novel method combining system dynamics (SD) and multi-agent simulation (MAS) to estimate these emissions. The SD model predicts travel demand under policy scenarios, while the MAS model calculates vehicle-level emissions. By linking macro-level policies with micro-level traffic operations, this integrated approach improves emission quantification accuracy and simulates long-term trends, offering a tool to evaluate decarbonization strategies. Applied to the Hangzhou Ring Expressway, the SD-MAS model evaluates three strategies: optimizing freight demand, promoting new energy vehicles (NEVs), and enhancing energy consumption technology. Results show that managing freight demand is an effective and rapidly deployable measure, while NEV promotion has a more modest initial impact but becomes increasingly important over time. Energy efficiency improvements offer the greatest reductions. Nevertheless, while each strategy reduces emissions, no single strategy can achieve carbon peaking alone. Implementing all three strategies at maximum intensity could peak emissions before 2031, with reductions of up to 47 %. This study offers quantitative support and a robust methodology for policymakers to manage emissions in road transport systems.

Suggested Citation

  • Tang, Wei & Liu, Yi & Feng, Chi & Mei, Zhenyu, 2025. "Expressway decarbonization strategy assessment: An integrated system dynamics and multi-agent simulation approach," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925006051
    DOI: 10.1016/j.apenergy.2025.125875
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    2. Sun, Lishan & Huang, Yuchen & Liu, Shuli & Chen, Yanyan & Yao, Liya & Kashyap, Anil, 2017. "A completive survey study on the feasibility and adaptation of EVs in Beijing, China," Applied Energy, Elsevier, vol. 187(C), pages 128-139.
    3. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    4. Clare Linton & Susan Grant-Muller & William F. Gale, 2015. "Approaches and Techniques for Modelling CO 2 Emissions from Road Transport," Transport Reviews, Taylor & Francis Journals, vol. 35(4), pages 533-553, July.
    5. Yaping Dong & Jinliang Xu & Xingliang Liu & Chao Gao & Han Ru & Zhihao Duan, 2019. "Carbon Emissions and Expressway Traffic Flow Patterns in China," Sustainability, MDPI, vol. 11(10), pages 1-12, May.
    6. Shang, Wen-Long & Chen, Yishui & Yu, Qing & Song, Xuewang & Chen, Yanyan & Ma, Xiaolei & Chen, Xiqun & Tan, Zhijia & Huang, Jianling & Ochieng, Washington, 2023. "Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data," Applied Energy, Elsevier, vol. 352(C).
    7. Bassolas, Aleix & Ramasco, José J. & Herranz, Ricardo & Cantú-Ros, Oliva G., 2019. "Mobile phone records to feed activity-based travel demand models: MATSim for studying a cordon toll policy in Barcelona," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 56-74.
    8. Xu, Jinghang & Guan, Yuru & Oldfield, Jonathan & Guan, Dabo & Shan, Yuli, 2024. "China carbon emission accounts 2020-2021," Applied Energy, Elsevier, vol. 360(C).
    9. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    10. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    11. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    12. Chen, Daqiang & Ignatius, Joshua & Sun, Danzhi & Goh, Mark & Zhan, Shalei, 2018. "Impact of congestion pricing schemes on emissions and temporal shift of freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 77-105.
    13. Zhan, Weipeng & Wang, Zhenpo & Deng, Junjun & Liu, Peng & Cui, Dingsong, 2024. "Integrating system dynamics and agent-based modeling: A data-driven framework for predicting electric vehicle market penetration and GHG emissions reduction under various incentives scenarios," Applied Energy, Elsevier, vol. 372(C).
    14. Chu, Hsing-Chung & Meyer, Michael D., 2009. "Methodology for assessing emission reduction of truck-only toll lanes," Energy Policy, Elsevier, vol. 37(8), pages 3287-3294, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Monika & Bandyopadhyay, Kaushik Ranjan & Singh, Sanjay K., 2019. "Measuring effectiveness of carbon tax on Indian road passenger transport: A system dynamics approach," Energy Economics, Elsevier, vol. 81(C), pages 341-354.
    2. Shang, Wen-Long & Song, Xuewang & Xiang, Qiannian & Chen, Haibo & Elhajj, Mireille & Bi, Huibo & Wang, Kun & Ochieng, Washington, 2025. "The impact of deep reinforcement learning-based traffic signal control on Emission reduction in urban Road networks empowered by cooperative vehicle-infrastructure systems," Applied Energy, Elsevier, vol. 390(C).
    3. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Munawar Javed Ahmad, 2021. "Examining the Factors Affecting CO2 Emissions from Road Transportation in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 152-159.
    4. Ahamadreza Tahsiri & Mohammadjavad Arab, 2023. "A system dynamics model for a holistic analysis of urban NOx emissions: a case study of Tehran, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7299-7323, July.
    5. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    6. Yuan, Hang & Zhao, Lei & Yang, Hangjun, 2025. "Comparative analysis of carbon emission reduction policies in China's manufacturing and transportation sectors," Transport Policy, Elsevier, vol. 160(C), pages 159-180.
    7. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    8. Zhan, Weipeng & Wang, Zhenpo & Deng, Junjun & Liu, Peng & Cui, Dingsong, 2024. "Integrating system dynamics and agent-based modeling: A data-driven framework for predicting electric vehicle market penetration and GHG emissions reduction under various incentives scenarios," Applied Energy, Elsevier, vol. 372(C).
    9. Hongyang Qiao & Sanmang Wu, 2025. "Decoupling Factor Analysis for Sustainable Development in China’s Four Municipalities Using the Tapio Model," Sustainability, MDPI, vol. 17(6), pages 1-26, March.
    10. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    11. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    12. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    13. Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
    14. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    15. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    16. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    17. Gao, Jinshuang & Li, Sheng & Wu, Fan & Jiang, Long & Zhao, Yazhou & Zhang, Xuejun, 2024. "Study on efficient heating method by solar coupled air source heat pump system with phase change heat storage in severe cold region," Applied Energy, Elsevier, vol. 367(C).
    18. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    19. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    20. Hua Duan & Bin Li & Qi Wang, 2024. "Static High-Quality Development Efficiency and Its Dynamic Changes for China: A Non-Radial Directional Distance Function and a Metafrontier Non-Radial Malmquist Model," Mathematics, MDPI, vol. 12(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925006051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.