IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004684.html
   My bibliography  Save this article

Performance analysis of a novel CPV/T system with curved CIGS modules: Comparison with traditional flat modules

Author

Listed:
  • Xie, Hao
  • Song, Zhiying
  • Tang, Yayun
  • Ji, Jie

Abstract

Concentrating photovoltaic/thermal technology is a high-efficiency but low-cost approach for power generation and high-temperature heat extraction by utilizing solar energy. However, the high temperature, uneven light spot and temperature distribution are the core issues causing electrical efficiency degradation and cell damage, seriously affecting the reliability of the concentrating photovoltaic/thermal system. Although efforts have been made to address the problems by efficient cooling or concentrator improvement, the receivers are always crystalline silicon modules with flat surface. This is the first time to propose the novel concentrating photovoltaic/thermal system employing curved CIGS (CuInxGa1−xSe2) receiver. After particle swarm optimization, the standard deviation of local concentration ratio drops from 4.75 to 3.00. On the selected day, the illumination uniformity is optimized by 58.22 %, the maximum temperature difference drops from 24.9 °C to 14.79 °C, and the standard deviation of surface temperature is reduced from 5.61 °C to 2.71 °C, meaning the temperature uniformity is optimized by 51.69 %. With a smaller shading area, the curved receiver also saved 0.3 MJ solar energy, resulting in higher final water temperature at 87 °C. Although the reference efficiencies of CIGS at 16 % is lower than that of c-Si at 17.8 %, the proposed system still produces 4.3 % more electricity than traditional system and generates 6.8 % more electricity than the system with flat CIGS receiver. Over the whole day, the overall efficiency is 68.92 %.

Suggested Citation

  • Xie, Hao & Song, Zhiying & Tang, Yayun & Ji, Jie, 2025. "Performance analysis of a novel CPV/T system with curved CIGS modules: Comparison with traditional flat modules," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004684
    DOI: 10.1016/j.apenergy.2025.125738
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.