IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004852.html
   My bibliography  Save this article

Optical-electrical-thermal model of flexible non-planar photovoltaic modules: Decoupling, validation, and photoelectric performance analysis

Author

Listed:
  • Tian, Xinyi
  • Wang, Jun
  • Lu, Guodong
  • Jiang, Mingjun
  • Khan, Shoaib Ahmed
  • Ji, Jie

Abstract

The advanced flexible photovoltaic (PV) module can be molded into three-dimensional shapes, allowing it to adapt to complex nonplanar building surfaces and generate electricity for building occupants. However, limited theoretical research has been done on multi-physics simulations to predict performance under dynamic operating conditions. This paper presents a comprehensive optical-electrical-thermal (O-E-T) model for flexible curved PV modules. The model incorporates an optical model to determine solar irradiance distribution, a thermal model to calculate operating temperature, and an electrical model to predict power output. A simplified approach assumes uniform solar irradiance across the curved surface while maintaining the total irradiance intensity of real-world non-uniform distributions. The model is validated through indoor and outdoor experiments. The parametric analysis related to the curvature and the azimuth angle demonstrates that vertical-installed curved PV modules show promising power generation potential in summer, particularly at larger central angles, as off-south orientations benefit from morning&evening smaller solar incident angles. A case study on a curved PV-tiled roof optimized using a genetic algorithm shows that flat-installed PV tiles on a sloped roof produce 10.32 % more energy than curved PV tiles (2413.11 kWh vs. 2187.42 kWh).

Suggested Citation

  • Tian, Xinyi & Wang, Jun & Lu, Guodong & Jiang, Mingjun & Khan, Shoaib Ahmed & Ji, Jie, 2025. "Optical-electrical-thermal model of flexible non-planar photovoltaic modules: Decoupling, validation, and photoelectric performance analysis," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004852
    DOI: 10.1016/j.energy.2025.134843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Guiqiang & Lu, Yashun & Shittu, Samson & Zhao, Xudong, 2020. "Scale effect on electrical characteristics of CPC-PV," Energy, Elsevier, vol. 192(C).
    2. Li, Guiqiang & Lu, Yashun & Zhao, Xudong, 2022. "The Gaussian non-uniform temperature field on PV cells - A unique solution for enhancing the performance of the PV/T module," Energy, Elsevier, vol. 250(C).
    3. Chennaif, Mohammed & Maaouane, Mohamed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2022. "Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model," Applied Energy, Elsevier, vol. 305(C).
    4. Cai, Jingyong & Fang, Jianxiao & Liang, Mengyao & Zhu, Qunzhi & Shi, Zhengrong & Li, Qifen & Ren, Hongbo & Xu, Lijie & Zhang, Tao, 2024. "Dynamic performance enhancement in 2D and 3D curved flexible photovoltaic modules: Mismatch loss analysis and cell interconnection configurations optimization," Applied Energy, Elsevier, vol. 374(C).
    5. Xu, Lijie & Hu, Hui & Ji, Jie & Cai, Jingyong & Dai, Leyang, 2024. "Hybrid energy saving performance of translucent CdTe photovoltaic window on small ship under sailing condition," Energy, Elsevier, vol. 295(C).
    6. Wang, Jikai & Zhu, Qunzhi & Cai, Jingyong & Fu, Zaiguo & Zhang, Tao & Wu, Chenxi, 2024. "Design and experimental study of a novel flexible PV/T structure," Energy, Elsevier, vol. 296(C).
    7. Sun, Bo & Lu, Lin & Chen, Jianheng & Ma, Tao & Yuan, Yanping, 2024. "Full-spectrum radiative cooling for enhanced thermal and electrical performance of bifacial solar photovoltaic modules: A nationwide quantitative analysis," Applied Energy, Elsevier, vol. 362(C).
    8. Walker, Linus & Hofer, Johannes & Schlueter, Arno, 2019. "High-resolution, parametric BIPV and electrical systems modeling and design," Applied Energy, Elsevier, vol. 238(C), pages 164-179.
    9. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    10. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    11. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Hao & Song, Zhiying & Tang, Yayun & Ji, Jie, 2025. "Performance analysis of a novel CPV/T system with curved CIGS modules: Comparison with traditional flat modules," Applied Energy, Elsevier, vol. 389(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xinyi & Wang, Jun & Lu, Guodong & Khan, Shoaib Ahmed & Ji, Jie & Lu, Dikai & Lian, Chongyan & Shang, Hang, 2025. "Coupled theoretical modelling for the photoelectric performance by the concave-bent flexible PV module," Renewable Energy, Elsevier, vol. 238(C).
    2. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    3. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    4. Mateus, Ricardo & Silva, Sandra Monteiro & de Almeida, Manuela Guedes, 2019. "Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings," Renewable Energy, Elsevier, vol. 137(C), pages 82-92.
    5. Tian, Xinyi & Wang, Jun & Wang, Chuyao & Ji, Jie, 2023. "Comparison analysis of the glazed and unglazed curved water-based PV/T roofs in the non-heating season," Renewable Energy, Elsevier, vol. 205(C), pages 899-917.
    6. Tian, Xinyi & Wang, Jun & Ji, Jie & Wang, Chuyao & Ke, Wei & Yuan, Shuang, 2023. "A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation," Energy, Elsevier, vol. 273(C).
    7. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    8. Sahoo, Sarat Kumar, 2016. "Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 927-939.
    9. Lin, Wenye & Ma, Zhenjun & Li, Kehua & Tyagi, V.V. & Pandey, A.K., 2021. "A dynamic simulation platform for fault modelling and characterisation of building integrated photovoltaics," Renewable Energy, Elsevier, vol. 179(C), pages 963-981.
    10. Abdelrazik, Ahmed S. & Al-Sulaiman, FA & Saidur, R. & Ben-Mansour, R., 2018. "A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 110-129.
    11. Patel, M. Tahir & Vijayan, Ramachandran A. & Asadpour, Reza & Varadharajaperumal, M. & Khan, M. Ryyan & Alam, Muhammad A., 2020. "Temperature-dependent energy gain of bifacial PV farms: A global perspective," Applied Energy, Elsevier, vol. 276(C).
    12. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    13. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).
    14. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    15. Li, Peidu & Luo, Yong & Xia, Xin & Shi, Wen & Zheng, Junqing & Liao, Zhouyi & Gao, Xiaoqing & Chang, Rui, 2024. "Advancing photovoltaic panel temperature forecasting: A comparative study of numerical simulation and machine learning in two types of PV power plant," Renewable Energy, Elsevier, vol. 237(PA).
    16. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    17. Kaldellis, John K. & Kapsali, Marina & Kavadias, Kosmas A., 2014. "Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece," Renewable Energy, Elsevier, vol. 66(C), pages 612-624.
    18. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    19. Liu, Shen & Colson, Gregory & Hao, Na & Wetzstein, Michael, 2018. "Toward an optimal household solar subsidy: A social-technical approach," Energy, Elsevier, vol. 147(C), pages 377-387.
    20. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.