IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003891.html
   My bibliography  Save this article

Data-driven approach for day-ahead System Non-Synchronous Penetration forecasting: A comprehensive framework, model development and analysis

Author

Listed:
  • Cardo-Miota, Javier
  • Trivedi, Rohit
  • Patra, Sandipan
  • Khadem, Shafi
  • Bahloul, Mohamed

Abstract

This article presents a comprehensive, innovative, and data-driven approach for predicting System Non-Synchronous Penetration (SNSP) levels. It consists of iterative steps that involve data analytics and forecasting model development to overcome the challenges associated with forecasting, such as data mining or overfitting. The approach starts by defining the problem domain and identifying relevant features using the Pearson correlation method. The framework ensures that all forecasting models carry out data pre-processing uniformly. The hyperparameters, understood as adjustable external factors not learned during the training process that affect the performance and predictive ability of the forecasting model are optimized using the random search algorithm to enhance the models’ performance. The study compares the performance of classical models, such as Random Forest and Light Gradient Boosting, with advanced machine learning-based models, such as Feed-forward, Gate Recurrent Unit, Short-Term Long Memory, and Convolutional Neural Network. Data from the Irish power system is chosen as a case study. The results indicate that the Feed-forward model produces the lowest errors. It has a Mean Absolute Error of about 4.09, a Root Mean Squared Error of 5.37 and a Mean Absolute Percentage Error of 18.17% respectively. This systematic and practical approach can be applied to other regions with similar challenges. This study also highlights the potential of advanced machine learning-based models in improving SNSP forecasting accuracy. The approach is beneficial for network and market operators, and ancillary service providers in smart grid network operations, with a 15-minute resolution. It provides a promising direction for future research in this area.

Suggested Citation

  • Cardo-Miota, Javier & Trivedi, Rohit & Patra, Sandipan & Khadem, Shafi & Bahloul, Mohamed, 2024. "Data-driven approach for day-ahead System Non-Synchronous Penetration forecasting: A comprehensive framework, model development and analysis," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003891
    DOI: 10.1016/j.apenergy.2024.123006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.