IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v332y2023ics0306261922017810.html
   My bibliography  Save this article

Impact of dual credit policy on new energy vehicles technology innovation with information asymmetry

Author

Listed:
  • Ma, Miaomiao
  • Meng, Weidong
  • Li, Yuyu
  • Huang, Bo

Abstract

Promoting new energy vehicles (NEVs) is one of the most effective means to solve the increasingly severe energy shortage and environmental pollution problems. Considering the dual credit policy and carmakers having private information, we construct the Stackelberg game models to obtain the optimal technology innovation strategy for the NEVs production systems under information symmetry and information asymmetry. Then, we compare the optimal solutions in different situations obtaining some interesting conclusions. The results reveal that (1) the dual credit policy can promote technology innovation and improve the technical performance of NEVs. Moreover, the higher the credits price and the higher the technology innovation credit coefficient, the more significant the promotion effect. (2) When customers’ technology preference is low, information asymmetry weakens the incentive effect of the dual credit policy. With the increase of credit price or technology innovation credit coefficient, the weakening of the dual credit policy incentive effect by information asymmetry becomes more significant.

Suggested Citation

  • Ma, Miaomiao & Meng, Weidong & Li, Yuyu & Huang, Bo, 2023. "Impact of dual credit policy on new energy vehicles technology innovation with information asymmetry," Applied Energy, Elsevier, vol. 332(C).
  • Handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017810
    DOI: 10.1016/j.apenergy.2022.120524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhaofu Hong & Chengbin Chu & Linda Zhang & Yugang Yu, 2017. "Optimizing an emission trading scheme for local governments: A Stackelberg game model and hybrid algorithm," Post-Print hal-01745365, HAL.
    2. Cai, Jianhu & Hu, Xiaoqing & Tadikamalla, Pandu R. & Shang, Jennifer, 2017. "Flexible contract design for VMI supply chain with service-sensitive demand: Revenue-sharing and supplier subsidy," European Journal of Operational Research, Elsevier, vol. 261(1), pages 143-153.
    3. Jun-bin Wang & Lufei Huang, 2021. "A Game-Theoretic Analytical Approach for Fostering Energy-Saving Innovation in the Electric Vehicle Supply Chain," SAGE Open, , vol. 11(2), pages 21582440211, June.
    4. Meng, Weidong & Ma, Miaomiao & Li, Yuyu & Huang, Bo, 2022. "New energy vehicle R&D strategy with supplier capital constraints under China's dual credit policy," Energy Policy, Elsevier, vol. 168(C).
    5. Fangruo Chen, 1998. "Echelon Reorder Points, Installation Reorder Points, and the Value of Centralized Demand Information," Management Science, INFORMS, vol. 44(12-Part-2), pages 221-234, December.
    6. Lin, Boqiang & Shi, Lei, 2022. "Do environmental quality and policy changes affect the evolution of consumers’ intentions to buy new energy vehicles," Applied Energy, Elsevier, vol. 310(C).
    7. Miaomiao Ma & Weidong Meng & Yuyu Li & Bo Huang, 2021. "Supply chain coordination strategy for NEVs based on supplier alliance under dual-credit policy," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-36, October.
    8. Genc, Talat S. & De Giovanni, Pietro, 2018. "Optimal return and rebate mechanism in a closed-loop supply chain game," European Journal of Operational Research, Elsevier, vol. 269(2), pages 661-681.
    9. Chong Xin & Yunzhu Zhou & Xiaochen Zhu & Lin Li & Xin Chen, 2019. "Optimal Decisions for Carbon Emission Reduction through Technological Innovation in a Hybrid-Channel Supply Chain with Consumers’ Channel Preferences," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-24, January.
    10. Ou, Shiqi & Lin, Zhenhong & Qi, Liang & Li, Jie & He, Xin & Przesmitzki, Steven, 2018. "The dual-credit policy: Quantifying the policy impact on plug-in electric vehicle sales and industry profits in China," Energy Policy, Elsevier, vol. 121(C), pages 597-610.
    11. Hong, Zhaofu & Chu, Chengbin & Zhang, Linda L. & Yu, Yugang, 2017. "Optimizing an emission trading scheme for local governments: A Stackelberg game model and hybrid algorithm," International Journal of Production Economics, Elsevier, vol. 193(C), pages 172-182.
    12. Dong Cai & Chunxiang Guo & Yue Tan, 2019. "Design of Incentive Contract for Technological Innovation of New Energy Vehicles with Asymmetric Information," IJERPH, MDPI, vol. 16(22), pages 1-14, November.
    13. Haresh Gurnani & Murat Erkoc, 2008. "Supply contracts in manufacturer‐retailer interactions with manufacturer‐quality and retailer effort‐induced demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 200-217, April.
    14. Shen, Yuelin & Willems, Sean P., 2012. "Coordinating a channel with asymmetric cost information and the manufacturer's optimality," International Journal of Production Economics, Elsevier, vol. 135(1), pages 125-135.
    15. Li, Jizi & Ku, Yaoyao & Yu, Yue & Liu, Chunling & Zhou, Yuping, 2020. "Optimizing production of new energy vehicles with across-chain cooperation under China’s dual credit policy," Energy, Elsevier, vol. 194(C).
    16. Li, Wei & Chen, Jing, 2018. "Pricing and quality competition in a brand-differentiated supply chain," International Journal of Production Economics, Elsevier, vol. 202(C), pages 97-108.
    17. Yu, Yi & Zhou, Dequn & Zha, Donglan & Wang, Qunwei & Zhu, Qingyuan, 2021. "Optimal production and pricing strategies in auto supply chain when dual credit policy is substituted for subsidy policy," Energy, Elsevier, vol. 226(C).
    18. Cheng, Yongwei & Fan, Tijun, 2021. "Production coopetition strategies for an FV automaker and a competitive NEV automaker under the dual-credit policy," Omega, Elsevier, vol. 103(C).
    19. Xu, He & Shi, Ning & Ma, Shi-hua & Lai, Kin Keung, 2010. "Contracting with an urgent supplier under cost information asymmetry," European Journal of Operational Research, Elsevier, vol. 206(2), pages 374-383, October.
    20. Ma, Haicheng & Lou, Gaoxiang & Fan, Tijun & Chan, Hing Kai & Chung, Sai Ho, 2021. "Conventional automotive supply chains under China's dual-credit policy: fuel economy, production and coordination," Energy Policy, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Miaomiao & Meng, Weidong & Huang, Bo & Li, Yuyu, 2023. "The influence of dual credit policy on new energy vehicle technology innovation under demand forecast information asymmetry," Energy, Elsevier, vol. 271(C).
    2. Li, Xin & Wu, Ming & Shi, Chunming & Chen, Yan, 2023. "Impacts of green credit policies and information asymmetry: From market perspective," Resources Policy, Elsevier, vol. 81(C).
    3. He, Haonan & Chen, Wenze & Zhou, Qi, 2023. "Subsidy allocation strategies for power industry’s clean transition under Bayesian Nash equilibrium," Energy Policy, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yushi Wang & Licheng Sun & Shilong Li, 2022. "Production Decisions of Automakers Considering the Impact of Anticipated Regret under the Dual-Credit Policy," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    2. Liangui Peng & Ying Li & Hui Yu, 2021. "Effects of Dual Credit Policy and Consumer Preferences on Production Decisions in Automobile Supply Chain," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    3. Ma, Miaomiao & Meng, Weidong & Huang, Bo & Li, Yuyu, 2023. "The influence of dual credit policy on new energy vehicle technology innovation under demand forecast information asymmetry," Energy, Elsevier, vol. 271(C).
    4. Feng Liu & Yingshuang Tan & Sudipto Sarkar & Xueqing Zhang & Xingjun Huang, 2023. "When to invest in electric vehicles under dual credit policy: A real options approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2186-2198, June.
    5. Meng, Weidong & Ma, Miaomiao & Li, Yuyu & Huang, Bo, 2022. "New energy vehicle R&D strategy with supplier capital constraints under China's dual credit policy," Energy Policy, Elsevier, vol. 168(C).
    6. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    7. Lian Ding & Xiaodong Zhu, 2023. "The Impact of the Dual-Credit Policy on Production and Cooperative R&D in the Automotive Supply Chain," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    8. Hsiao, Cody Yu-Ling & Yang, Rui & Zheng, Xin & Chiu, Yi-Bin, 2023. "Evaluations of policy contagion for new energy vehicle industry in China," Energy Policy, Elsevier, vol. 173(C).
    9. Liu, Qin & Wen, Xiaonan & Cao, Qinwei, 2023. "Multi-objective development path evolution of new energy vehicle policy driven by big data: From the perspective of economic-ecological-social," Applied Energy, Elsevier, vol. 341(C).
    10. Haoyi Zhang & Fuquan Zhao & Han Hao & Zongwei Liu, 2021. "Effect of Chinese Corporate Average Fuel Consumption and New Energy Vehicle Dual-Credit Regulation on Passenger Cars Average Fuel Consumption Analysis," IJERPH, MDPI, vol. 18(14), pages 1-13, July.
    11. Ying Xie & Jie Wu & Hannian Zhi & Muhammad Riaz & Liangpeng Wu, 2023. "A Study on the Evolution of Competition in China’s Auto Market Considering Market Capacity Constraints and a Game Payoff Matrix: Based on the Dual Credit Policy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    12. Yangyang Wang & Yongxi Yi & Chunyan Fu & Yuqiong Li, 2023. "Price competition and joint energy‐consumption reduction technology investment of new energy and fuel vehicles under the double‐points policy," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2278-2291, June.
    13. Lee, Jun-Yeon & Choi, Sungyong, 2021. "Supply chain investment and contracting for carbon emissions reduction: A social planner's perspective," International Journal of Production Economics, Elsevier, vol. 231(C).
    14. Matsui, Kenji, 2019. "A supply chain member should set its margin later if another member's cost is highly uncertain," European Journal of Operational Research, Elsevier, vol. 275(1), pages 127-138.
    15. Hafezi, Maryam & Zolfagharinia, Hossein, 2018. "Green product development and environmental performance: Investigating the role of government regulations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 395-410.
    16. Ziyue Wang & Juan Zhang & Huiju Zhao, 2020. "The Selection of Green Technology Innovations under Dual-Credit Policy," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    17. Dong-Xiao Yang & Lei Yang & Xiao-Ling Chen & Chan Wang & Pu-Yan Nie, 2023. "Research on credit pricing mechanism in dual-credit policy: is the government in charge or is the market in charge?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1561-1581, February.
    18. Zhang, Xiaoyan & Zhu, Shanying & He, Jianping & Yang, Bo & Guan, Xinping, 2019. "Credit rating based real-time energy trading in microgrids," Applied Energy, Elsevier, vol. 236(C), pages 985-996.
    19. Xiaoyan Li & Hengzhou Xu, 2020. "Effect of local government decision‐making competition on carbon emissions: Evidence from China's three urban agglomerations," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2418-2431, September.
    20. Lurdes Jesus Ferreira & Luís Pereira Dias & Jieling Liu, 2022. "Adopting Carbon Pricing Tools at the Local Level: A City Case Study in Portugal," Sustainability, MDPI, vol. 14(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.