IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v261y2020ics0306261919319646.html
   My bibliography  Save this article

Enhancing proton exchange membrane fuel cell performance via graphene oxide surface synergy

Author

Listed:
  • Wang, Likun
  • Bliznakov, Stoyan
  • Isseroff, Rebecca
  • Zhou, Yuchen
  • Zuo, Xianghao
  • Raut, Aniket
  • Wang, Wanhua
  • Cuiffo, Michael
  • Kim, Taejin
  • Rafailovich, Miriam H.

Abstract

Proton exchange membrane fuel cells (PEMFCs) are one of the most promising energy solutions in meeting the soaring global energy demand and relieving the environmental concerns associated with greenhouse emissions. Cost and durability are two main obstacles hindering the successful commercialization of PEMFCs. Here, we propose a solution which could significantly enhance durability, reduce PGM catalyst, and increase tolerance to impure hydrogen sources thereby reducing cost and increasing convenience by allowing operation in ambient conditions. We show that applying a coating of 1 μg/cm2 of graphene oxide (GO) directly onto the Nafion membrane or electrodes enabled a 60% enhancement of the maximum power output to 0.78 or 0.76 W/cm2, using only a total of 0.15 mg/cm2 Pt catalyst. Durability tests were carried out complying with the DOE2020 protocols, indicating that the enhancement persisted even after 30k cycles, where the maximum power decrease was only 9%, as compared with 18% in the control sample, and the decrease in voltage at 1.5 A/cm2 was only 13%, as compared with 70% of the control sample. In addition, blending of 0.1% CO gas into the input H2 stream reduced the power by 72% in the control, while only 26% power reduction was observed in the coated PEMFCs. Also, electrochemical impedance spectroscopy (EIS) measurements exhibited a decrease in resistance of only 13%, while the active Pt surface area of the electrode with GO coating after 30k cycles was 17.5% higher than the control and the minimal DOE requirement.

Suggested Citation

  • Wang, Likun & Bliznakov, Stoyan & Isseroff, Rebecca & Zhou, Yuchen & Zuo, Xianghao & Raut, Aniket & Wang, Wanhua & Cuiffo, Michael & Kim, Taejin & Rafailovich, Miriam H., 2020. "Enhancing proton exchange membrane fuel cell performance via graphene oxide surface synergy," Applied Energy, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919319646
    DOI: 10.1016/j.apenergy.2019.114277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baccioli, Andrea & Ferrari, Lorenzo & Vizza, Francesco & Desideri, Umberto, 2019. "Potential energy recovery by integrating an ORC in a biogas plant," Applied Energy, Elsevier, vol. 256(C).
    2. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    3. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    4. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    5. Yu-Chi Hsieh & Yu Zhang & Dong Su & Vyacheslav Volkov & Rui Si & Lijun Wu & Yimei Zhu & Wei An & Ping Liu & Ping He & Siyu Ye & Radoslav R. Adzic & Jia X Wang, 2013. "Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    6. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    7. Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
    8. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
    9. Li, Hailong & Dong, Beibei & Yu, Zhixin & Yan, Jinyue & Zhu, Kai, 2019. "Thermo-physical properties of CO2 mixtures and their impacts on CO2 capture, transport and storage: Progress since 2011," Applied Energy, Elsevier, vol. 255(C).
    10. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Lyuming & Chen, Dongfang & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    2. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    4. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    5. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    6. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    7. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    8. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    9. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    10. Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
    11. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    12. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    13. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    14. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    15. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    16. Galatioto, A. & Ricciu, R. & Salem, T. & Kinab, E., 2019. "Energy and economic analysis on retrofit actions for Italian public historic buildings," Energy, Elsevier, vol. 176(C), pages 58-66.
    17. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    18. Ahmed M. Nassef & Ahmed Handam, 2022. "Parameter Estimation-Based Slime Mold Algorithm of Photocatalytic Methane Reforming Process for Hydrogen Production," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    19. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Mattia Ricco & Jinhao Meng & Tudor Gherman & Gabriele Grandi & Remus Teodorescu, 2019. "Smart Battery Pack for Electric Vehicles Based on Active Balancing with Wireless Communication Feedback," Energies, MDPI, vol. 12(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919319646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.