IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp637-654.html
   My bibliography  Save this article

Trace compounds impact on SOFC performance: Experimental and modelling approach

Author

Listed:
  • Papurello, Davide
  • Iafrate, Chiara
  • Lanzini, Andrea
  • Santarelli, Massimo

Abstract

Issues related to SOFCs performance and durability are strictly dependent on the feeding fuel quality. SOFC capability to be fed with fuels different from hydrogen opens to scenarios in which a big variety of fuels can be used at the aim. Unfortunately, problems related to anode deactivation due to the contaminants presence can arise. The present work investigates the performance of anode supported solid oxide fuel cells in case of co-feeding of different trace compounds. Electrochemical impedance spectroscopy is the investigation technique used to analyze the impedance spectra. Typical biogas from OFMSW trace contaminants that follow an initial failure in the cleaning system, such as sulphur, aromatic compounds and siloxanes, have been simultaneously tested. Tests showed that the most deleterious impact for the SOFC was due to the H2S action. This influences mostly the electrochemical losses respect to diffusion losses, even if this last are not null and can be accounted as a secondary effect. On the contrary, the co-presence of D4 and H2S mitigates in the short-term the effect that the only D4 produces when fed with biogas. The most relevant consequence produced by C7H8 was recorded in the low frequency of Nyquist plot, affecting mainly the mass transport phenomena. Experimental tests are accompanied by the implementation of the fuel cell model through COMSOL Multiphysics software to study the effect of pollutants on fuel cell performance.

Suggested Citation

  • Papurello, Davide & Iafrate, Chiara & Lanzini, Andrea & Santarelli, Massimo, 2017. "Trace compounds impact on SOFC performance: Experimental and modelling approach," Applied Energy, Elsevier, vol. 208(C), pages 637-654.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:637-654
    DOI: 10.1016/j.apenergy.2017.09.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:637-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.