IDEAS home Printed from
   My bibliography  Save this article

Tall towers, long blades and manifest destiny: The migration of land-based wind from the Great Plains to the thirteen colonies


  • Burt, Michelle
  • Firestone, Jeremy
  • Madsen, John A.
  • Veron, Dana E.
  • Bowers, Richard


Until recently, it was not economically feasible to install wind turbines in many locations, including in large portions of the states that border the Atlantic Ocean in the United States, due to the low wind speeds. Newer designs allow turbines to be deployed at higher hub heights (>100m) where wind speeds are greater, and come with longer blades, allowing them to produce significantly more energy at lower wind speeds. We undertake a case study, using rural Sussex County, Delaware, US, to study their economic feasibility. We take an interdisciplinary approach, move beyond theory and general models, and consider micro-scale wind resources (the primary driver of revenue); local site geology, which influences project feasibility and foundation cost; local transmission constraints and expenses related to transmission and connection to the existing electrical grid; local values attributable to the environmental attributes of wind power; operation and maintenance costs (including insurance and replacement parts); land use and zoning considerations, including setbacks from roads, structures and airports; taxes; and rents/royalties. We find the base case levelized cost of energy (LCOE) to be ∼$70/MWh (before accounting for the federal production tax credit) based on a 25year-life of a wind turbine. Sensitivity analyses are undertaken around project life, project finance, the discount rate, and wind speed.

Suggested Citation

  • Burt, Michelle & Firestone, Jeremy & Madsen, John A. & Veron, Dana E. & Bowers, Richard, 2017. "Tall towers, long blades and manifest destiny: The migration of land-based wind from the Great Plains to the thirteen colonies," Applied Energy, Elsevier, vol. 206(C), pages 487-497.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:487-497
    DOI: 10.1016/j.apenergy.2017.08.178

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Johansson, V. & Thorson, L. & Goop, J. & Göransson, L. & Odenberger, M. & Reichenberg, L. & Taljegard, M. & Johnsson, F., 2017. "Value of wind power – Implications from specific power," Energy, Elsevier, vol. 126(C), pages 352-360.
    2. Hirth, Lion & Müller, Simon, 2016. "System-friendly wind power," Energy Economics, Elsevier, vol. 56(C), pages 51-63.
    3. Capellaro, Mark, 2016. "Prediction of site specific wind energy value factors," Renewable Energy, Elsevier, vol. 87(P1), pages 430-436.
    4. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    5. Jeremy Firestone & Willett Kempton & Meredith Blaydes Lilley & Kateryna Samoteskul, 2012. "Public acceptance of offshore wind power: does perceived fairness of process matter?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(10), pages 1387-1402, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Joseph Kiesecker & Sharon Baruch-Mordo & Mike Heiner & Dhaval Negandhi & James Oakleaf & Christina Kennedy & Pareexit Chauhan, 2019. "Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    2. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    3. Duffy, Aidan & Hand, Maureen & Wiser, Ryan & Lantz, Eric & Dalla Riva, Alberto & Berkhout, Volker & Stenkvist, Maria & Weir, David & Lacal-Arántegui, Roberto, 2020. "Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States," Applied Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Tafarte & Annedore Kanngießer & Martin Dotzauer & Benedikt Meyer & Anna Grevé & Markus Millinger, 2020. "Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions," Energies, MDPI, vol. 13(5), pages 1-25, March.
    2. Klie, Leo & Madlener, Reinhard, 2020. "Concentration Versus Diversification: A Spatial Deployment Approach to Improve the Economics of Wind Power," FCN Working Papers 2/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2021.
    3. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    4. Dragomir, George & Șerban, Alexandru & Năstase, Gabriel & Brezeanu, Alin Ionuț, 2016. "Wind energy in Romania: A review from 2009 to 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 129-143.
    5. Winkler, Jenny & Pudlik, Martin & Ragwitz, Mario & Pfluger, Benjamin, 2016. "The market value of renewable electricity – Which factors really matter?," Applied Energy, Elsevier, vol. 184(C), pages 464-481.
    6. Brown, Patrick R. & O'Sullivan, Francis M., 2020. "Spatial and temporal variation in the value of solar power across United States electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. al Irsyad, Muhammad Indra & Halog, Anthony & Nepal, Rabindra, 2019. "Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors," Renewable Energy, Elsevier, vol. 130(C), pages 536-546.
    8. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    9. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    10. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    11. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    12. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    14. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    15. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    16. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    17. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    18. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    19. Irene Clara Pisón Fernández & Félix Puime Guillén & Miguel Ángel Crespo Cibrán, 2015. "Desarrollo de un modelo de determinación de cash-flows para un proyecto de energía eólica," Economic Analysis Working Papers (2002-2010). Atlantic Review of Economics (2011-2016), Colexio de Economistas de A Coruña, Spain and Fundación Una Galicia Moderna, vol. 1, pages 1-1, June.
    20. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:487-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.