IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p281-d303248.html
   My bibliography  Save this article

Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development

Author

Listed:
  • Joseph Kiesecker

    (Global Lands, The Nature Conservancy, 117 E. Mountain Ave, Suite 201, Fort Collins, CO 80524, USA)

  • Sharon Baruch-Mordo

    (Global Lands, The Nature Conservancy, 117 E. Mountain Ave, Suite 201, Fort Collins, CO 80524, USA)

  • Mike Heiner

    (Global Lands, The Nature Conservancy, 117 E. Mountain Ave, Suite 201, Fort Collins, CO 80524, USA)

  • Dhaval Negandhi

    (India Program, The Nature Conservancy, Link Road, Lajpat Nagar Part III, New Delhi 110024, India)

  • James Oakleaf

    (Global Lands, The Nature Conservancy, 117 E. Mountain Ave, Suite 201, Fort Collins, CO 80524, USA)

  • Christina Kennedy

    (Global Lands, The Nature Conservancy, 117 E. Mountain Ave, Suite 201, Fort Collins, CO 80524, USA)

  • Pareexit Chauhan

    (Center for Study of Science, Technology and Policy, No. 18 & 19, 10th Cross, Mayura Street, Papanna Layout, Nagashettyhalli (RMV II Stage), Bengaluru 560094, India)

Abstract

India has committed to reduce emissions with a goal to increase renewable energy production to 175 gigawatts (GW) by 2022. Achieving this objective will involve rapidly increasing the deployment of solar and wind energy, while at the same time addressing the related challenges of the financing requirements, environment impacts, and power grid integration. Developing energy on lands degraded by human activities rather than placing new infrastructure within natural habitats or areas of high production agriculture would reduce cumulative impacts and minimize land use conflicts. We estimated that converted lands have the potential capacity of 1789 GW across India, which is >10 times the 2022 goals. At the same time, the total land footprint needed to meet India’s 2022 renewable energy target is large, ranging from ~55,000 to 125,000 km 2 , which is roughly the size of Himachal Pradesh or Chhattisgarh, respectively. If renewable energy is advanced with the singular aim of maximizing resource potential, approximately 6700–11,900 km 2 of forest land and 24,100–55,700 km 2 of agricultural land could be impacted. Subsidies and incentive programs aimed at promoting low-impact renewable energy deployment and establishing mitigation obligations that raise costs for projects that create land-impacts could improve the public support for renewable energy.

Suggested Citation

  • Joseph Kiesecker & Sharon Baruch-Mordo & Mike Heiner & Dhaval Negandhi & James Oakleaf & Christina Kennedy & Pareexit Chauhan, 2019. "Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:281-:d:303248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burt, Michelle & Firestone, Jeremy & Madsen, John A. & Veron, Dana E. & Bowers, Richard, 2017. "Tall towers, long blades and manifest destiny: The migration of land-based wind from the Great Plains to the thirteen colonies," Applied Energy, Elsevier, vol. 206(C), pages 487-497.
    2. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    3. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    4. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2013. "Status of solar wind renewable energy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 1-10.
    5. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    6. Mohan, Aniruddh, 2017. "Whose land is it anyway? Energy futures & land use in India," Energy Policy, Elsevier, vol. 110(C), pages 257-262.
    7. Deshmukh, Ranjit & Wu, Grace C. & Callaway, Duncan S. & Phadke, Amol, 2019. "Geospatial and techno-economic analysis of wind and solar resources in India," Renewable Energy, Elsevier, vol. 134(C), pages 947-960.
    8. Mentis, Dimitrios & Siyal, Shahid Hussain & Korkovelos, Alexandros & Howells, Mark, 2016. "A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions," Renewable Energy, Elsevier, vol. 97(C), pages 77-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose Manuel Barrera & Alejandro Reina & Alejandro Maté & Juan Carlos Trujillo, 2020. "Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    2. Poshnath, Aravind & Rismanchi, Behzad & Rajabifard, Abbas, 2023. "Adoption of Renewable Energy Systems in common properties of multi-owned buildings: Introduction of ‘Energy Entitlement’," Energy Policy, Elsevier, vol. 174(C).
    3. Mohamad Issa & Adrian Ilinca & Daniel R. Rousse & Loïc Boulon & Philippe Groleau, 2023. "Renewable Energy and Decarbonization in the Canadian Mining Industry: Opportunities and Challenges," Energies, MDPI, vol. 16(19), pages 1-22, October.
    4. Mariam Gómez Sánchez & Yunesky Masip Macia & Alejandro Fernández Gil & Carlos Castro & Suleivys M. Nuñez González & Jacqueline Pedrera Yanes, 2020. "A Mathematical Model for the Optimization of Renewable Energy Systems," Mathematics, MDPI, vol. 9(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deshmukh, Ranjit & Wu, Grace C. & Callaway, Duncan S. & Phadke, Amol, 2019. "Geospatial and techno-economic analysis of wind and solar resources in India," Renewable Energy, Elsevier, vol. 134(C), pages 947-960.
    2. Obane, Hideaki & Nagai, Yu & Asano, Kenji, 2020. "Assessing land use and potential conflict in solar and onshore wind energy in Japan," Renewable Energy, Elsevier, vol. 160(C), pages 842-851.
    3. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    4. Lari Shanlang Tiewsoh & Jakub Jirásek & Martin Sivek, 2019. "Electricity Generation in India: Present State, Future Outlook and Policy Implications," Energies, MDPI, vol. 12(7), pages 1-14, April.
    5. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Sánchez, David & Bortkiewicz, Anna & Rodríguez, José M. & Martínez, Gonzalo S. & Gavagnin, Giacomo & Sánchez, Tomás, 2016. "A methodology to identify potential markets for small-scale solar thermal power generators," Applied Energy, Elsevier, vol. 169(C), pages 287-300.
    7. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2020. "A spatially explicit planning approach for power systems with a high share of renewable energy sources," Applied Energy, Elsevier, vol. 260(C).
    8. Jain, Anjali & Das, Partha & Yamujala, Sumanth & Bhakar, Rohit & Mathur, Jyotirmay, 2020. "Resource potential and variability assessment of solar and wind energy in India," Energy, Elsevier, vol. 211(C).
    9. Rashiqa Abdul Salam & Khuram Pervez Amber & Naeem Iqbal Ratyal & Mehboob Alam & Naveed Akram & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2020. "An Overview on Energy and Development of Energy Integration in Major South Asian Countries: The Building Sector," Energies, MDPI, vol. 13(21), pages 1-37, November.
    10. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    12. Srilakshmi, Gopalakrishnan & Venkatesh, V. & Thirumalai, N.C. & Suresh, N.S., 2015. "Challenges and opportunities for Solar Tower technology in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 698-709.
    13. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Solar energy deployment for sustainable future of India: Hybrid SWOC-AHP analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1138-1151.
    14. Hairat, Manish Kumar & Ghosh, Sajal, 2017. "100GW solar power in India by 2022 – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1041-1050.
    15. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    16. Yang, Honglun & Wang, Qiliang & Huang, Xiaona & Li, Jing & Pei, Gang, 2018. "Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers," Energy, Elsevier, vol. 145(C), pages 206-216.
    17. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    18. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    19. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    20. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:281-:d:303248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.