IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp1279-1291.html
   My bibliography  Save this article

Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline

Author

Listed:
  • Guo, Xiaolu
  • Yan, Xingqing
  • Yu, Jianliang
  • Zhang, Yongchun
  • Chen, Shaoyun
  • Mahgerefteh, Haroun
  • Martynov, Sergey
  • Collard, Alexander
  • Proust, Christophe

Abstract

Long-distance CO2 pipelines will be widely applied to transport captured CO2 from fossil fuel fired power plants for subsequent sequestration. In the event of pipeline failure a large mass of the inventory may be discharged within a short time, this represents a significant hazard if leaks continue undetected. An important result of the risk assessment for a CO2 pipeline is the safety distance. At present the lack of knowledge concerning near-field source terms and the far-field dispersion behavior of CO2 leaking from pipelines can make the calculation of safety distances imprecise. Study of near-field source terms and dispersion behavior is therefore necessary and of paramount importance for assessing safety distances and the impact of CO2 pipeline releases on the surrounding environment. In order to study CO2 pipeline leakage, a large-scale pipeline set-up with a total length of 258m and an internal diameter of 233mm was constructed to study the near-field characteristics and dispersion behavior of supercritical CO2 during sudden releases. The dynamic pressure near the orifice and CO2 concentrations and temperatures within the downstream dispersion region were measured together with the pressures inside the pipeline. The under-expanded jet flow structure and phase transitions in the near-field were studied for supercritical CO2 released though different orifice diameters (15mm, 50mm and Full Bore Rupture). The formation of the visible cloud, the distribution of cloud temperatures and CO2 concentrations in the far-field were analyzed using the measured data, photographs and video recordings. The safety distances along the horizontal direction for 5% CO2 concentration for each of the three orifice diameters were determined from the lower limit for adverse human effects.

Suggested Citation

  • Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 183(C), pages 1279-1291.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1279-1291
    DOI: 10.1016/j.apenergy.2016.09.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916313903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.09.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 178(C), pages 189-197.
    2. Xing, Ji & Liu, Zhenyi & Huang, Ping & Feng, Changgen & Zhou, Yi & Sun, Ruiyan & Wang, Shigang, 2014. "CFD validation of scaling rules for reduced-scale field releases of carbon dioxide," Applied Energy, Elsevier, vol. 115(C), pages 525-530.
    3. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Venton, Philip, 2014. "Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state," Applied Energy, Elsevier, vol. 126(C), pages 56-68.
    4. Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
    5. Duan, Hong-Bo & Fan, Ying & Zhu, Lei, 2013. "What’s the most cost-effective policy of CO2 targeted reduction: An application of aggregated economic technological model with CCS?," Applied Energy, Elsevier, vol. 112(C), pages 866-875.
    6. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    7. Xie, Qiyuan & Tu, Ran & Jiang, Xi & Li, Kang & Zhou, Xuejin, 2014. "The leakage behavior of supercritical CO2 flow in an experimental pipeline system," Applied Energy, Elsevier, vol. 130(C), pages 574-580.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    2. Teng, Lin & Li, Yuxing & Hu, Qihui & Zhang, Datong & Ye, Xiao & Gu, Shuaiwei & Wang, Cailin, 2018. "Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases," Energy, Elsevier, vol. 157(C), pages 806-814.
    3. Matteo Vitali & Cristina Zuliani & Francesco Corvaro & Barbara Marchetti & Alessandro Terenzi & Fabrizio Tallone, 2021. "Risks and Safety of CO 2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases," Energies, MDPI, vol. 14(15), pages 1-17, July.
    4. Yu, Shuai & Yan, Xingqing & He, Yifan & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the leakage morphology and temperature variations in the soil zone during large-scale buried CO2 pipeline leakage," Energy, Elsevier, vol. 288(C).
    5. Zhou, Yuan & Huang, Yanping & Tian, Gengyuan & Yuan, Yuan & Zeng, Chengtian & Huang, Jiajian & Tang, Longchang, 2022. "Classification and characteristics of supercritical carbon dioxide leakage from a vessel," Energy, Elsevier, vol. 258(C).
    6. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Linton, Valerie, 2019. "Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies," Applied Energy, Elsevier, vol. 250(C), pages 32-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    2. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 178(C), pages 189-197.
    3. Zhou, Yuan & Huang, Yanping & Tian, Gengyuan & Yuan, Yuan & Zeng, Chengtian & Huang, Jiajian & Tang, Longchang, 2022. "Classification and characteristics of supercritical carbon dioxide leakage from a vessel," Energy, Elsevier, vol. 258(C).
    4. Teng, Lin & Li, Yuxing & Hu, Qihui & Zhang, Datong & Ye, Xiao & Gu, Shuaiwei & Wang, Cailin, 2018. "Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases," Energy, Elsevier, vol. 157(C), pages 806-814.
    5. Zhou, Mi & Ma, Shuhao & Zhang, Naiqiang, 2023. "Experimental investigation of LPG-releasing processes with varied damage sizes on a pressurized vessel," Energy, Elsevier, vol. 276(C).
    6. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    7. Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
    8. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Yang, Yang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander, 2017. "Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline," Energy, Elsevier, vol. 118(C), pages 1066-1078.
    9. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    10. He, Guoxi & Li, Yansong & Huang, Yuanjie & Sun, Liying & Liao, Kexi, 2019. "A framework of smart pipeline system and its application on multiproduct pipeline leakage handling," Energy, Elsevier, vol. 188(C).
    11. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    12. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    13. Chao Pu & Zhenjian Liu & Ge Pu, 2022. "On the Factors of Impact Pressure in Supercritical CO 2 Phase-Transition Blasting—A Numerical Study," Energies, MDPI, vol. 15(22), pages 1-15, November.
    14. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    15. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    16. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    17. Jiang, Yiming & Pan, Xuhai & Cai, Qiong & Wang, Zhilei & Klymenko, Oleksiy V. & Hua, Min & Wang, Qingyuan & Zhang, Tao & Li, Yunyu & Jiang, Juncheng, 2022. "Physics and flame morphology of supersonic spontaneously combusting hydrogen spouting into air," Renewable Energy, Elsevier, vol. 196(C), pages 959-972.
    18. Noel, Lance & McCormack, Regina, 2014. "A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus," Applied Energy, Elsevier, vol. 126(C), pages 246-255.
    19. Munkejord, Svend Tollak & Austegard, Anders & Deng, Han & Hammer, Morten & Stang, H.G. Jacob & Løvseth, Sigurd W., 2020. "Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions," Energy, Elsevier, vol. 211(C).
    20. Wu, Pengzhi & Liu, Changchun & Wen, Hu & Luo, Zhenmin & Fan, Shixing & Mi, Wansheng, 2023. "Experimental investigation of jet impingement during accidental release of liquid CO2," Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1279-1291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.