IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp1066-1078.html
   My bibliography  Save this article

Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline

Author

Listed:
  • Guo, Xiaolu
  • Yan, Xingqing
  • Yu, Jianliang
  • Yang, Yang
  • Zhang, Yongchun
  • Chen, Shaoyun
  • Mahgerefteh, Haroun
  • Martynov, Sergey
  • Collard, Alexander

Abstract

As part of the carbon capture and storage (CCS) process, pipeline transportation is the safest and most economic option for delivering captured CO2 to a storage site. However, in the event of pipeline rupture an enormous mass of CO2 may be released very rapidly, presenting several risks to the pipeline and surrounding population including the significantly increased risk of brittle fracture in the pipe wall. The study of pressure variation and phase change in CO2 during pipeline blowdown can contribute to the understanding of fracture initiation and propagation, as well as downstream CO2 diffusion behavior. As part of the CO2QUEST project, a reusable, industrial scale pipeline experimental apparatus with a total length of 258 m and the inner diameter of 233 mm was fabricated to study pure CO2 pipeline blowdown. A dual-disc blasting device was used to remotely control the opening of the pipeline. The instantaneous pressure response following release was measured with high frequency pressure transducers. Variation in fluid temperature at the top and bottom of pipeline was also recorded. Six groups of pure CO2 pipeline release experiments were conducted with initially gaseous and dense phase inventories with three orifice diameters (15 mm, 50 mm and Full Bore Rupture). The typical waveform characteristics of pressure responses accompanying by the process of phase transitions in gaseous and dense CO2 leakage were observed during the release as results of the propagation of a series of expansion waves. The complicated phase transitions were obtained during depressurization of gaseous and dense CO2 releases. The gas-solid phase or gas-liquid-solid phase appeared when the pressure was below the triple point during the dense CO2 release.

Suggested Citation

  • Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Yang, Yang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander, 2017. "Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline," Energy, Elsevier, vol. 118(C), pages 1066-1078.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1066-1078
    DOI: 10.1016/j.energy.2016.10.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216315791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 178(C), pages 189-197.
    2. Iribarren, Diego & Petrakopoulou, Fontina & Dufour, Javier, 2013. "Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery," Energy, Elsevier, vol. 50(C), pages 477-485.
    3. Chong, Fah Keen & Lawrence‎, Kelvin Kuhanraj & Lim, Pek Peng & Poon, Marcus Chinn Yoong & Foo, Dominic Chwan Yee & Lam, Hon Loong & Tan, Raymond R., 2014. "Planning of carbon capture storage deployment using process graph approach," Energy, Elsevier, vol. 76(C), pages 641-651.
    4. Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munkejord, Svend Tollak & Austegard, Anders & Deng, Han & Hammer, Morten & Stang, H.G. Jacob & Løvseth, Sigurd W., 2020. "Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions," Energy, Elsevier, vol. 211(C).
    2. Zhou, Yuan & Huang, Yanping & Tian, Gengyuan & Yuan, Yuan & Zeng, Chengtian & Huang, Jiajian & Tang, Longchang, 2022. "Classification and characteristics of supercritical carbon dioxide leakage from a vessel," Energy, Elsevier, vol. 258(C).
    3. Fan, Mu-wei & Ao, Chu-chu & Wang, Xiao-rong, 2019. "Comprehensive method of natural gas pipeline efficiency evaluation based on energy and big data analysis," Energy, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    2. Zhou, Yuan & Huang, Yanping & Tian, Gengyuan & Yuan, Yuan & Zeng, Chengtian & Huang, Jiajian & Tang, Longchang, 2022. "Classification and characteristics of supercritical carbon dioxide leakage from a vessel," Energy, Elsevier, vol. 258(C).
    3. Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
    4. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 183(C), pages 1279-1291.
    5. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    6. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    7. Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
    8. Horia Andrei & Cristian Andrei Badea & Paul Andrei & Filippo Spertino, 2020. "Energetic-Environmental-Economic Feasibility and Impact Assessment of Grid-Connected Photovoltaic System in Wastewater Treatment Plant: Case Study," Energies, MDPI, vol. 14(1), pages 1-22, December.
    9. Wang, Lei & Yao, Bowen & Xie, Haojun & Winterfeld, Philip H. & Kneafsey, Timothy J. & Yin, Xiaolong & Wu, Yu-Shu, 2017. "CO2 injection-induced fracturing in naturally fractured shale rocks," Energy, Elsevier, vol. 139(C), pages 1094-1110.
    10. Sahraei, Mohammad Hossein & Farhadi, Fatola & Boozarjomehry, Ramin Bozorgmehry, 2013. "Analysis and interaction of exergy, environmental and economic in multi-objective optimization of BTX process based on evolutionary algorithm," Energy, Elsevier, vol. 59(C), pages 147-156.
    11. Modahl, Ingunn Saur & Raadal, Hanne Lerche & Gagnon, Luc & Bakken, Tor Haakon, 2013. "How methodological issues affect the energy indicator results for different electricity generation technologies," Energy Policy, Elsevier, vol. 63(C), pages 283-299.
    12. Munkejord, Svend Tollak & Austegard, Anders & Deng, Han & Hammer, Morten & Stang, H.G. Jacob & Løvseth, Sigurd W., 2020. "Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions," Energy, Elsevier, vol. 211(C).
    13. Süle, Zoltán & Baumgartner, János & Dörgő, Gyula & Abonyi, János, 2019. "P-graph-based multi-objective risk analysis and redundancy allocation in safety-critical energy systems," Energy, Elsevier, vol. 179(C), pages 989-1003.
    14. Fontina Petrakopoulou & Diego Iribarren & Javier Dufour, 2015. "Life‐cycle performance of natural gas power plants with pre‐combustion CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 268-276, June.
    15. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    16. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    17. Teng, Lin & Li, Yuxing & Hu, Qihui & Zhang, Datong & Ye, Xiao & Gu, Shuaiwei & Wang, Cailin, 2018. "Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases," Energy, Elsevier, vol. 157(C), pages 806-814.
    18. Freire Ordóñez, Diego & Shah, Nilay & Guillén-Gosálbez, Gonzalo, 2021. "Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities," Applied Energy, Elsevier, vol. 286(C).
    19. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    20. He, Guoxi & Li, Yansong & Huang, Yuanjie & Sun, Liying & Liao, Kexi, 2019. "A framework of smart pipeline system and its application on multiproduct pipeline leakage handling," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1066-1078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.