IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225018596.html
   My bibliography  Save this article

Experimental study of leakage diffusion in supercritical/dense phase CO2 pipelines

Author

Listed:
  • Hu, Qihui
  • Guo, Yaqi
  • Chen, Junwen
  • Yin, Buze
  • Li, Yuxing
  • Li, Mingzhuo
  • Wang, Yifei
  • Wu, Yu
  • Zhu, Jianlu
  • Song, Guangchun

Abstract

The risk of leakage of supercritical/dense-phase CO2 pipelines during transportation is unavoidable, and CO2 diffusion and low-temperature effects may cause harm to the surrounding environment and personnel. In order to reveal the variation rules of pressure, temperature and flow rate at the leakage port, as well as the distribution characteristics of CO2 concentration and temperature in the diffusion zone, this study conducted several sets of large-scale CO2 pipeline leakage experiments, which took into account the effects of different pressures, temperatures, and leakage port conditions. The lowest temperature at the leakage port was measured to reach −72.6 °C by an independently designed method of near-leakage port parameter measurement, and the flow integral calculation verified the generation of dry ice particles. For far-field diffusion, the concentration and temperature drop in the diffusion zone increased significantly with increasing pressure and leak port in the pipe, and decreased with increasing temperature in the pipeline. The diffusion distances for different concentration thresholds (1 %, 4 %, 10 %) are quantitatively analyzed and the hazard distance is classified according to 4 % (Immediately Dangerous to Life or Health, IDLH). The low temperature distribution pattern is discussed and the diffusion distance of 10 °C is analyzed, and the lowest temperature in the diffusion zone can be as large as −37.5 °C. Through the concentration and temperature distribution at different heights to reflect the characteristics of CO2 heavy gas diffusion. The experimental data can provide a reference for engineering pipeline operation, and at the same time provide a validation benchmark for numerical simulation studies.

Suggested Citation

  • Hu, Qihui & Guo, Yaqi & Chen, Junwen & Yin, Buze & Li, Yuxing & Li, Mingzhuo & Wang, Yifei & Wu, Yu & Zhu, Jianlu & Song, Guangchun, 2025. "Experimental study of leakage diffusion in supercritical/dense phase CO2 pipelines," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018596
    DOI: 10.1016/j.energy.2025.136217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225018596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Teng, Lin & Li, Yuxing & Hu, Qihui & Zhang, Datong & Ye, Xiao & Gu, Shuaiwei & Wang, Cailin, 2018. "Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases," Energy, Elsevier, vol. 157(C), pages 806-814.
    2. Zhu, Jianlu & Wang, Sailei & Pan, Jun & Lv, Hao & Zhang, Yixiang & Han, Hui & Liu, Cuiwei & Duo, Zhili & Li, Yuxing, 2024. "Experimental study on leakage temperature field of hydrogen blending into natural gas buried pipeline," Applied Energy, Elsevier, vol. 359(C).
    3. Matteo Vitali & Cristina Zuliani & Francesco Corvaro & Barbara Marchetti & Alessandro Terenzi & Fabrizio Tallone, 2021. "Risks and Safety of CO 2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases," Energies, MDPI, vol. 14(15), pages 1-17, July.
    4. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Venton, Philip, 2014. "Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state," Applied Energy, Elsevier, vol. 126(C), pages 56-68.
    5. E. A. G. Schuur & A. D. McGuire & C. Schädel & G. Grosse & J. W. Harden & D. J. Hayes & G. Hugelius & C. D. Koven & P. Kuhry & D. M. Lawrence & S. M. Natali & D. Olefeldt & V. E. Romanovsky & K. Schae, 2015. "Climate change and the permafrost carbon feedback," Nature, Nature, vol. 520(7546), pages 171-179, April.
    6. Xie, Qiyuan & Tu, Ran & Jiang, Xi & Li, Kang & Zhou, Xuejin, 2014. "The leakage behavior of supercritical CO2 flow in an experimental pipeline system," Applied Energy, Elsevier, vol. 130(C), pages 574-580.
    7. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 183(C), pages 1279-1291.
    8. Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
    9. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Mi & Ma, Shuhao & Zhang, Naiqiang, 2023. "Experimental investigation of LPG-releasing processes with varied damage sizes on a pressurized vessel," Energy, Elsevier, vol. 276(C).
    2. Zhou, Yuan & Huang, Yanping & Tian, Gengyuan & Yuan, Yuan & Zeng, Chengtian & Huang, Jiajian & Tang, Longchang, 2022. "Classification and characteristics of supercritical carbon dioxide leakage from a vessel," Energy, Elsevier, vol. 258(C).
    3. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    4. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 183(C), pages 1279-1291.
    5. Matteo Vitali & Cristina Zuliani & Francesco Corvaro & Barbara Marchetti & Alessandro Terenzi & Fabrizio Tallone, 2021. "Risks and Safety of CO 2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases," Energies, MDPI, vol. 14(15), pages 1-17, July.
    6. Teng, Lin & Li, Yuxing & Hu, Qihui & Zhang, Datong & Ye, Xiao & Gu, Shuaiwei & Wang, Cailin, 2018. "Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases," Energy, Elsevier, vol. 157(C), pages 806-814.
    7. Yu, Shuai & Yan, Xingqing & He, Yifan & Chen, Lei & Yu, Jianliang & Chen, Shaoyun, 2024. "Establishment of a one-dimensional model for CO2 Pipeline rupture process and design recommendations," Energy, Elsevier, vol. 308(C).
    8. Yu, Shuai & Yan, Xingqing & He, Yifan & Hu, Yanwei & Qiao, Fanfan & Yang, Kai & Cao, Zhangao & Chen, Lei & Liu, Zhenxi & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the effect of valve openings and multi-stage throttling structures on the pressure and temperature during CO2 pipeline venting processes," Energy, Elsevier, vol. 308(C).
    9. Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
    10. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    11. Zhang, Quan & Qin, Bin & Zhou, Naijun & Lin, Jingwen & Hao, Jiaxu & Lu, Zhaijun, 2024. "Experimental study on transient characteristics and thermal stratification of high−pressure CO2 leakage under different initial density," Energy, Elsevier, vol. 313(C).
    12. Zhu, Jianlu & Xie, Naiya & Miao, Qing & Li, Zihe & Hu, Qihui & Yan, Feng & Li, Yuxing, 2024. "Simulation of boost path and phase control method in supercritical CO2 pipeline commissioning process," Renewable Energy, Elsevier, vol. 231(C).
    13. Wu, Pengzhi & Liu, Changchun & Wen, Hu & Luo, Zhenmin & Fan, Shixing & Mi, Wansheng, 2023. "Experimental investigation of jet impingement during accidental release of liquid CO2," Energy, Elsevier, vol. 279(C).
    14. He, Guoxi & Li, Yansong & Huang, Yuanjie & Sun, Liying & Liao, Kexi, 2019. "A framework of smart pipeline system and its application on multiproduct pipeline leakage handling," Energy, Elsevier, vol. 188(C).
    15. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Linton, Valerie, 2019. "Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies," Applied Energy, Elsevier, vol. 250(C), pages 32-47.
    16. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 178(C), pages 189-197.
    17. Enbin Liu & Xudong Lu & Daocheng Wang, 2023. "A Systematic Review of Carbon Capture, Utilization and Storage: Status, Progress and Challenges," Energies, MDPI, vol. 16(6), pages 1-48, March.
    18. Zhu, Jianlu & Wu, Jialing & Xie, Naiya & Li, Zihe & Hu, Qihui & Li, Yuxing, 2024. "Study on water hammer phase transition characteristics of dense/liquid phase CO2 pipeline," Energy, Elsevier, vol. 311(C).
    19. Yu, Shuai & Yan, Xingqing & He, Yifan & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the leakage morphology and temperature variations in the soil zone during large-scale buried CO2 pipeline leakage," Energy, Elsevier, vol. 288(C).
    20. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.