IDEAS home Printed from
   My bibliography  Save this article

Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer


  • Godina, Radu
  • Rodrigues, Eduardo M.G.
  • Matias, João C.O.
  • Catalão, João P.S.


In this paper an overloading prevention of a private customer power distribution transformer (PDT) in an island in Portugal through the means of a new smart electric vehicle (EV) charging scheduler is proposed. The aim of this paper is to assess the repercussion of the penetration of additional power to restore the full level of EV battery state of charge (SoC) on dielectric oil deterioration of the PDT of a private industry client. This will allow EVs to charge while their owners are at work at three different working shifts during the day. In addition, the system is part of an isolated electric grid in a Portuguese Island. A transformer thermal model is utilised in this paper to assess hot-spot temperature by having the information of the load ratio. The data used for the main inputs of the model are the private industry client daily load profile, PDT parameters, the characteristics of the factory and EV parameters. This paper demonstrates that the proposed solution allows avoiding the overloading of the PDT, thus mitigating the loss-of-life, while charging all the EVs plugged-in at the beginning of each working shift.

Suggested Citation

  • Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:29-42
    DOI: 10.1016/j.apenergy.2016.06.019

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Neaimeh, Myriam & Wardle, Robin & Jenkins, Andrew M. & Yi, Jialiang & Hill, Graeme & Lyons, Padraig F. & Hübner, Yvonne & Blythe, Phil T. & Taylor, Phil C., 2015. "A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts," Applied Energy, Elsevier, vol. 157(C), pages 688-698.
    2. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2016. "Power demand control scenarios for smart grid applications with finite number of appliances," Applied Energy, Elsevier, vol. 162(C), pages 83-98.
    3. Honarmand, Masoud & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition," Energy, Elsevier, vol. 65(C), pages 572-579.
    4. Schuller, Alexander & Flath, Christoph M. & Gottwalt, Sebastian, 2015. "Quantifying load flexibility of electric vehicles for renewable energy integration," Applied Energy, Elsevier, vol. 151(C), pages 335-344.
    5. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    6. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    7. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    8. Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges," Energies, MDPI, Open Access Journal, vol. 8(10), pages 1-40, October.
    9. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    10. Dimitrova, Zlatina & Maréchal, François, 2016. "Techno–economic design of hybrid electric vehicles and possibilities of the multi-objective optimization structure," Applied Energy, Elsevier, vol. 161(C), pages 746-759.
    11. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    12. Broman Toft, Madeleine & Schuitema, Geertje & Thøgersen, John, 2014. "Responsible technology acceptance: Model development and application to consumer acceptance of Smart Grid technology," Applied Energy, Elsevier, vol. 134(C), pages 392-400.
    13. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    14. Erdinc, Ozan & Paterakis, Nikolaos G. & Catalão, João P.S., 2015. "Overview of insular power systems under increasing penetration of renewable energy sources: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 333-346.
    15. Colak, Ilhami & Fulli, Gianluca & Sagiroglu, Seref & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2015. "Smart grid projects in Europe: Current status, maturity and future scenarios," Applied Energy, Elsevier, vol. 152(C), pages 58-70.
    16. Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
    17. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    2. Rodrigues, E.M.G. & Godina, R. & Catalão, J.P.S., 2017. "Modelling electrochemical energy storage devices in insular power network applications supported on real data," Applied Energy, Elsevier, vol. 188(C), pages 315-329.
    3. Blasius, Erik & Wang, Zhenqi, 2018. "Effects of charging battery electric vehicles on local grid regarding standardized load profile in administration sector," Applied Energy, Elsevier, vol. 224(C), pages 330-339.
    4. Powell, Siobhan & Kara, Emre Can & Sevlian, Raffi & Cezar, Gustavo Vianna & Kiliccote, Sila & Rajagopal, Ram, 2020. "Controlled workplace charging of electric vehicles: The impact of rate schedules on transformer aging," Applied Energy, Elsevier, vol. 276(C).
    5. Tohid Harighi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Eklas Hossain, 2018. "An Overview of Energy Scenarios, Storage Systems and the Infrastructure for Vehicle-to-Grid Technology," Energies, MDPI, Open Access Journal, vol. 11(8), pages 1-18, August.
    6. Shin-Ki Hong & Sung Gu Lee & Myungchin Kim, 2020. "Assessment and Mitigation of Electric Vehicle Charging Demand Impact to Transformer Aging for an Apartment Complex," Energies, MDPI, Open Access Journal, vol. 13(10), pages 1-23, May.
    7. Liu, Yang & Yu, Nanpeng & Wang, Wei & Guan, Xiaohong & Xu, Zhanbo & Dong, Bing & Liu, Ting, 2018. "Coordinating the operations of smart buildings in smart grids," Applied Energy, Elsevier, vol. 228(C), pages 2510-2525.
    8. Pirouzi, Sasan & Aghaei, Jamshid & Niknam, Taher & Shafie-khah, Miadreza & Vahidinasab, Vahid & Catalão, João P.S., 2017. "Two alternative robust optimization models for flexible power management of electric vehicles in distribution networks," Energy, Elsevier, vol. 141(C), pages 635-651.
    9. Rahbari, Omid & Omar, Noshin & Firouz, Yousef & Rosen, Marc A. & Goutam, Shovon & Van Den Bossche, Peter & Van Mierlo, Joeri, 2018. "A novel state of charge and capacity estimation technique for electric vehicles connected to a smart grid based on inverse theory and a metaheuristic algorithm," Energy, Elsevier, vol. 155(C), pages 1047-1058.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:29-42. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.