IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424004797.html
   My bibliography  Save this article

Canopy humidity and irrigation regimes interactively affect rice physiology, grain filling and yield during grain filling period

Author

Listed:
  • Chen, Le
  • Deng, Xueyun
  • Duan, Hongxia
  • Tan, Xueming
  • Xie, Xiaobing
  • Pan, Xiaohua
  • Guo, Lin
  • Luo, Tao
  • Chen, Xinbiao
  • Gao, Hui
  • Wei, Haiyan
  • Zhang, Hongcheng
  • Zeng, Yongjun

Abstract

Rice growth and yield performance are closely related to climate variables and soil water regimes. Therefore, in this study, normal humidity (NH) and high humidity (HH) treatments of rice canopy were performed and combined with continuous flooding (CF), alternate wetting and drying (AWD), and drought cultivation (DC). The changes in crop physiology were monitored in a 2-year artificial intelligence greenhouse experiment. Creating HH lowered the seed setting rate, grains per panicle and yield relative both under AWD and CF, but was rather beneficial under DC. The HH decreased the soil plant analysis development (SPAD) parameter and net photosynthetic rate while leaf surface temperature, antioxidant enzyme activity and malondialdehyde (MDA) level got increased. Additionally, HH increased the contents of abscisic acid (ABA), gibberellin (GA3) and jasmonic acid (JA) and the activities of key starch synthase, increasing the grain filling rate while shortening the active filling duration. The rice yield of AWD treatment under HH condition was the highest, mainly because the net photosynthetic rate, pollen viability and key starch synthase activity were maintained at a higher level. The AWD measures can be adopted to maintain high rice yields under high humidity conditions, while yields can be improved by increasing canopy humidity under persistent drought conditions.

Suggested Citation

  • Chen, Le & Deng, Xueyun & Duan, Hongxia & Tan, Xueming & Xie, Xiaobing & Pan, Xiaohua & Guo, Lin & Luo, Tao & Chen, Xinbiao & Gao, Hui & Wei, Haiyan & Zhang, Hongcheng & Zeng, Yongjun, 2025. "Canopy humidity and irrigation regimes interactively affect rice physiology, grain filling and yield during grain filling period," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424004797
    DOI: 10.1016/j.agwat.2024.109143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Le & Deng, Xueyun & Duan, Hongxia & Tan, Xueming & Xie, Xiaobing & Pan, Xiaohua & Guo, Lin & Gao, Hui & Wei, Haiyan & Zhang, Hongcheng & Luo, Tao & Chen, Xinbiao & Zeng, Yongjun, 2023. "Water management can alleviate the deterioration of rice quality caused by high canopy humidity," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Xu, Guo-wei & Lu, Da-Ke & Wang, He-Zheng & Li, Youjun, 2018. "Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate," Agricultural Water Management, Elsevier, vol. 203(C), pages 385-394.
    3. Md. Ruhul Amin & Junbiao Zhang & Mingmei Yang, 2015. "Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    4. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaikh M. S. U. Eskander & Sam Fankhauser, 2022. "Income Diversification and Income Inequality: Household Responses to the 2013 Floods in Pakistan," Sustainability, MDPI, vol. 14(1), pages 1-12, January.
    2. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    3. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    4. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    5. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    6. Tite Ehuitché Béké & Aïssata Sobia, 2020. "The Economic Impact of Climatic Variations on Ivorian Rice Farming," Journal of Agricultural Studies, Macrothink Institute, vol. 8(2), pages 88-109, June.
    7. Md Monjurul Islam & Tofael Ahamed & Ryozo Noguchi, 2018. "Land Suitability and Insurance Premiums: A GIS-based Multicriteria Analysis Approach for Sustainable Rice Production," Sustainability, MDPI, vol. 10(6), pages 1-28, May.
    8. Yu, Chengzheng & Miao, Ruiqing & Khanna, Madhu, 2021. "Maladaptation of U.S. Corn and Soybean Yields to a Changing Climate," 2021 Conference, August 17-31, 2021, Virtual 315037, International Association of Agricultural Economists.
    9. repec:ags:aaea22:335522 is not listed on IDEAS
    10. Zhiqiang Cheng & Jinyang Cai, 2024. "How do climate anomalies affect the duration of land transfers? Evidence from China," Climatic Change, Springer, vol. 177(10), pages 1-20, October.
    11. Johannes Gallé & Anja Katzenberger, 2025. "Indian Agriculture Under Climate Change: The Competing Effect of Temperature and Rainfall Anomalies," Economics of Disasters and Climate Change, Springer, vol. 9(1), pages 53-105, March.
    12. Ollier, Maxime & Jayet, Pierre-Alain & Humblot, Pierre, 2024. "An assessment of the distributional impacts of autonomous adaptation to climate change from European agriculture," Ecological Economics, Elsevier, vol. 222(C).
    13. Md Nadiruzzaman & Mahjabeen Rahman & Uma Pal & Simon Croxton & Md Bazlur Rashid & Aditya Bahadur & Saleemul Huq, 2021. "Impact of Climate Change on Cotton Production in Bangladesh," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    14. Olexiy Kyrychenko, 2021. "Environmental Regulations, Air Pollution, and Infant Mortality in India: A Reexamination," CERGE-EI Working Papers wp703, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    15. Mohapatra, Souryabrata & Wen, Le & Sharp, Basil & Sahoo, Dukhabandhu, 2024. "Unveiling the spatial dynamics of climate impact on rice yield in India," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 922-945.
    16. Xiaowen Ding & Lin Liu & Guohe Huang & Ye Xu & Junhong Guo, 2019. "A Multi-Objective Optimization Model for a Non-Traditional Energy System in Beijing under Climate Change Conditions," Energies, MDPI, vol. 12(9), pages 1-21, May.
    17. Nazan An & Mustafa Tufan Turp & Murat Türkeş & Mehmet Levent Kurnaz, 2020. "Mid-Term Impact of Climate Change on Hazelnut Yield," Agriculture, MDPI, vol. 10(5), pages 1-20, May.
    18. Tsegaye Ginbo, 2022. "Heterogeneous impacts of climate change on crop yields across altitudes in Ethiopia," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    19. Manamboba Mitélama Balaka & Koffi Yovo, 2023. "Effet du changement climatique sur la production vivriere au Togo," African Development Review, African Development Bank, vol. 35(1), pages 11-23, March.
    20. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    21. Yun Qiu & Xi Chen & Wei Shi, 2020. "Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1127-1172, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424004797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.