IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421006636.html
   My bibliography  Save this article

The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains

Author

Listed:
  • Fan, Yubing
  • Himanshu, Sushil K.
  • Ale, Srinivasulu
  • DeLaune, Paul B.
  • Zhang, Tian
  • Park, Seong C.
  • Colaizzi, Paul D.
  • Evett, Steven R.
  • Baumhardt, R. Louis

Abstract

Declining water levels of the Ogallala Aquifer challenge economic availability of the groundwater and necessitate adoption of advanced irrigation systems with efficient irrigation strategies. Irrigation methods and application levels affect water productivity and farm profitability. This study evaluated the synergy between water conservation through a deficit irrigation strategy and economic profitability of agricultural production. The economic feasibility of cotton production was compared using field data for mid- and low-elevation spray application (MESA and LESA, respectively), low-energy precision application (LEPA), and subsurface drip irrigation (SDI) systems in the Texas High Plains (THP) region. Treatments included irrigated cotton with water application at 25%, 50%, 75%, and 100% evapotranspiration (ET) replacement levels and near-dryland cotton production. Both field-level data and well-calibrated model simulation data were used to assess cotton profitability at varying risk attitudes of producers. Results showed that more irrigation water consistently increased average net return of cotton production for all irrigation systems, except for SDI, which produced a similar net return at both 75% and 100% ET replacement levels. A larger chance of getting a net return greater than $380 ha−1 was observed for MESA, LESA and LEPA systems with the full irrigation at the 100% ET replacement level as well as for SDI with 75% ET replacement. Economic risk analysis showed that LEPA had a higher net return than other systems at each of the four irrigation levels and it would be preferred by risk-neutral, somewhat risk-averse, and rather risk-averse cotton producers. For each irrigation system, full irrigation was most preferred by risk-neutral producers and only minor differences were observed in the expected returns between 75% and 100% ET replacements as the producers became somewhat or more risk-averse. Groundwater conservation can be achieved with SDI without compromising crop yield or farm income, while government policies and financial incentives can help motivate producers to save irrigation water and maintain a high farm profit under spray and LEPA systems.

Suggested Citation

  • Fan, Yubing & Himanshu, Sushil K. & Ale, Srinivasulu & DeLaune, Paul B. & Zhang, Tian & Park, Seong C. & Colaizzi, Paul D. & Evett, Steven R. & Baumhardt, R. Louis, 2022. "The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006636
    DOI: 10.1016/j.agwat.2021.107386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Brian Hardaker & James W. Richardson & Gudbrand Lien & Keith D. Schumann, 2004. "Stochastic efficiency analysis with risk aversion bounds: a simplified approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 253-270, June.
    2. Richardson, James W. & Klose, Steven L. & Gray, Allan W., 2000. "An Applied Procedure For Estimating And Simulating Multivariate Empirical (Mve) Probability Distributions In Farm-Level Risk Assessment And Policy Analysis," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 32(2), pages 1-17, August.
    3. O'Shaughnessy, S.A. & Evett, S.R., 2010. "Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton," Agricultural Water Management, Elsevier, vol. 97(9), pages 1310-1316, September.
    4. O’Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D., 2015. "Dynamic prescription maps for site-specific variable rate irrigation of cotton," Agricultural Water Management, Elsevier, vol. 159(C), pages 123-138.
    5. Bhattarai, Anukul & Liu, Yangxuan & Smith, Amanda R & Liakos, Vasileios & Vellidis, George, "undated". "Economic Risk Analysis of Modern Irrigation Scheduling Methods on Cotton Production in Georgia," 2020 Annual Meeting, February 1-4, 2020, Louisville, Kentucky 302316, Southern Agricultural Economics Association.
    6. Williams, Jeffery R. & Saffert, Andrew T. & Barnaby, Glenn Arthur, Jr. & Llewelyn, Richard V. & Langemeier, Michael R., 2014. "A Risk Analysis of Adjusted Gross Revenue-Lite on Beef Farms," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(2), pages 1-18, May.
    7. Hunsaker, D.J. & French, A.N. & Waller, P.M. & Bautista, E. & Thorp, K.R. & Bronson, K.F. & Andrade-Sanchez, P., 2015. "Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA," Agricultural Water Management, Elsevier, vol. 159(C), pages 209-224.
    8. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    9. Guerrero, Bridget & Amosson, Steve & Almas, Lal & Marek, Thomas & Porter. Dana, 2016. "Economic Feasibility of Converting Center Pivot Irrigation to Subsurface Drip Irrigation," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2016.
    10. Lien, Gudbrand & Brian Hardaker, J. & Flaten, Ola, 2007. "Risk and economic sustainability of crop farming systems," Agricultural Systems, Elsevier, vol. 94(2), pages 541-552, May.
    11. Kadigi, Ibrahim L. & Richardson, James W. & Mutabazi, Khamaldin D. & Philip, Damas & Bizimana, Jean-Claude & Mourice, Sixbert K. & Waized, Betty, 2020. "Forecasting yields, prices and net returns for main cereal crops in Tanzania as probability distributions: A multivariate empirical (MVE) approach," Agricultural Systems, Elsevier, vol. 180(C).
    12. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    13. Schumann, Keith D. & Richardson, James W. & Lien, Gudbrand D. & Hardaker, J. Brian, 2004. "Stochastic Efficiency Analysis Using Multiple Utility Functions," 2004 Annual meeting, August 1-4, Denver, CO 19957, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Adusumilli, Naveen & Wang, Hua & Dodla, Syam & Deliberto, Michael, 2020. "Estimating risk premiums for adopting no-till and cover crops management practices in soybean production system using stochastic efficiency approach," Agricultural Systems, Elsevier, vol. 178(C).
    15. Guerrero, Bridget & Amosson, Steve & Almas, Lal & Marek, Thomas & Porter, Dana, 2016. "Economic Feasibility of Converting Center Pivot Irrigation to Subsurface Drip Irrigation," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2015, pages 1-12.
    16. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    17. Williams, Jeffery R. & Pachta, Matthew J. & Roozeboom, Kraig L. & Llewelyn, Richard V. & Claassen, Mark M. & Bergtold, Jason S., 2012. "Risk Analysis of Tillage and Crop Rotation Alternatives with Winter Wheat," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 44(4), pages 1-16, November.
    18. Gathala, Mahesh K. & Laing, Alison M. & Tiwari, T.P. & Timsina, J. & Islam, Md. S. & Chowdhury, A.K. & Chattopadhyay, C. & Singh, A.K. & Bhatt, B.P. & Shrestha, R. & Barma, N.C.D. & Rana, D.S. & Jacks, 2020. "Enabling smallholder farmers to sustainably improve their food, energy and water nexus while achieving environmental and economic benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    20. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    21. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    22. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    23. Geneille E. Greaves & Yu-Min Wang, 2017. "Identifying Irrigation Strategies for Improved Agricultural Water Productivity in Irrigated Maize Production through Crop Simulation Modelling," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    24. Himanshu, Sushil Kumar & Fan, Yubing & Ale, Srinivasulu & Bordovsky, James, 2021. "Simulated efficient growth-stage-based deficit irrigation strategies for maximizing cotton yield, crop water productivity and net returns," Agricultural Water Management, Elsevier, vol. 250(C).
    25. Thorp, K.R. & Thompson, A.L. & Bronson, K.F., 2020. "Irrigation rate and timing effects on Arizona cotton yield, water productivity, and fiber quality," Agricultural Water Management, Elsevier, vol. 234(C).
    26. Mitchell-McCallister, Donna & Williams, Ryan B. & Bordovsky, James & Mustian, Joseph & Ritchie, Glen & Lewis, Katie, 2020. "Maximizing profits via irrigation timing for capacity-constrained cotton production," Agricultural Water Management, Elsevier, vol. 229(C).
    27. O’Shaughnessy, Susan A. & Kim, Minyoung & Andrade, Manuel A. & Colaizzi, Paul D. & Evett, Steven R., 2020. "Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains," Agricultural Water Management, Elsevier, vol. 240(C).
    28. O'Shaughnessy, S.A. & Evett, S.R. & Colaizzi, P.D. & Howell, T.A., 2011. "Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton," Agricultural Water Management, Elsevier, vol. 98(10), pages 1523-1535, August.
    29. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Zhang, Bo & Iqbal, Hassan, 2018. "Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China," Agricultural Water Management, Elsevier, vol. 206(C), pages 1-10.
    30. Garibay, Victoria M. & Kothari, Kritika & Ale, Srinivasulu & Gitz, Dennis C. & Morgan, Gaylon D. & Munster, Clyde L., 2019. "Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Himanshu, Sushil K. & Ale, Srinivasulu & Bell, Jourdan & Fan, Yubing & Samanta, Sayantan & Bordovsky, James P. & Gitz III, Dennis C. & Lascano, Robert J. & Brauer, David K., 2023. "Evaluation of growth-stage-based variable deficit irrigation strategies for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Himanshu, Sushil Kumar & Fan, Yubing & Ale, Srinivasulu & Bordovsky, James, 2021. "Simulated efficient growth-stage-based deficit irrigation strategies for maximizing cotton yield, crop water productivity and net returns," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Himanshu, Sushil K. & Ale, Srinivasulu & Bell, Jourdan & Fan, Yubing & Samanta, Sayantan & Bordovsky, James P. & Gitz III, Dennis C. & Lascano, Robert J. & Brauer, David K., 2023. "Evaluation of growth-stage-based variable deficit irrigation strategies for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Lyman, Nathaniel & Nalley, Lawton Lanier, 2013. "Stochastic Valuation of Hybrid Rice Technology in Arkansas," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 142505, Southern Agricultural Economics Association.
    4. Williams, Jeffery R. & Llewelyn, Richard V. & Pendell, Dustin L. & Schlegel, Alan J. & Troy, Dumler, 2009. "A Risk Analysis of Converting CRP Acres to a Wheat-Sorghum-Fallow Rotation," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 45985, Southern Agricultural Economics Association.
    5. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Liu, Qi & Niu, Jun & Wood, Jeffrey D. & Kang, Shaozhong, 2022. "Spatial optimization of cropping pattern in the upper-middle reaches of the Heihe River basin, Northwest China," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Yangxuan Liu & Michael R. Langemeier & Ian M. Small & Laura Joseph & William E. Fry & Jean B. Ristaino & Amanda Saville & Benjamin M. Gramig & Paul V. Preckel, 2018. "A Risk Analysis of Precision Agriculture Technology to Manage Tomato Late Blight," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
    8. Watkins, K. Bradley & Mane, Ranjitsinh U. & McClung, Anna, 2018. "Economic Risk Analysis of Rice Cultivars under Organic and Conventional Management," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266587, Southern Agricultural Economics Association.
    9. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    10. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    11. Colaizzi, Paul D. & O’Shaughnessy, Susan A. & Evett, Steve R. & Mounce, Ryan B., 2017. "Crop evapotranspiration calculation using infrared thermometers aboard center pivots," Agricultural Water Management, Elsevier, vol. 187(C), pages 173-189.
    12. Williams, Jeffery R. & Pachta, Matthew J. & Roozeboom, Kraig L. & Llewelyn, Richard V. & Claassen, Mark M. & Bergtold, Jason S., 2012. "Risk Analysis of Tillage and Crop Rotation Alternatives with Winter Wheat," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 44(4), pages 1-16, November.
    13. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).
    14. Eihab M. Fathelrahman & James C. Ascough II & Dana L. Hoag & Robert W. Malone & Philip Heilman & Lori J. Wiles & Ramesh S. Kanwar, 2011. "Continuum of Risk Analysis Methods to Assess Tillage System Sustainability at the Experimental Plot Level," Sustainability, MDPI, vol. 3(7), pages 1-29, July.
    15. Frikkie Maré & Bennie Grové & Johan Willemse, 2017. "Evaluating the long-term effectiveness of crop insurance products to provide cost effective and constant cover for maize producers under stochastic yields and prices," Agrekon, Taylor & Francis Journals, vol. 56(3), pages 233-247, July.
    16. Hristovska, Tatjana & Watkins, K. Bradley & Anders, Merle M., 2012. "An Economic Risk Analysis of No-till Management for the Rice-Soybean Rotation System used in Arkansas," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119676, Southern Agricultural Economics Association.
    17. Barham, E. Hart Bise & Robinson, John R.C. & Richardson, James W. & Rister, M. Edward, 2011. "Mitigating Cotton Revenue Risk Through Irrigation, Insurance, and Hedging," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(4), pages 529-540, November.
    18. Asci, Serhat & VanSickle, John J. & Cantliffe, Daniel J., 2014. "Risk in Investment Decision Making and Greenhouse Tomato Production Expansion in Florida," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 17(4), pages 1-26, November.
    19. Fumasi, Roland J. & Klose, Steven L. & Kaase, Greg H. & Richardson, James W. & Outlaw, Joe L., 2008. "Viability of cellulosic feedstock production from producer to biorefinery," Integration of Agricultural and Energy Systems Conference, February 12-13, 2008, Atlanta, Georgia 48716, Farm Foundation.
    20. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.