IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421002766.html
   My bibliography  Save this article

Finnish farmers’ views towards fluctuating and changing precipitation patterns pave the way for the future

Author

Listed:
  • Peltonen-Sainio, Pirjo
  • Sorvali, Jaana
  • Kaseva, Janne

Abstract

At high latitudes of Europe climate change is projected to alter the risk of flooding and drought depending on the season. Farmers are the ones who decide how and when to adapt to excess, scarcity, and even to extreme precipitation events in agriculture. To understand farmer’s views on the needs and means to manage future changes in precipitation, a farmer survey was organized in 2018 with 4401 respondents and a follow-up survey in 2020 with 2000 respondents. The aims were: (1) to understand farmers’ views on future changes in precipitation patterns, (2) to gain an insight into farmer views on prioritization of the potential key adaptation measures (irrigation, drainage and maintenance of soil conditions) to future floods and drought episodes and thereby, (3) to be better able to support farmers in their primary task of food production in a sustainable manner in a changing climate. This study highlighted that farmers need financial support, but also more information about the costs and benefits of the measures to cope with changing precipitation patterns—not least due to the many uncertainties in projecting future precipitation patterns. As fluctuating precipitation have many environmental impacts in addition to those on production per se, costs and investments of adaptation to climatic constraints should not be payable only by the farmers. Farmers prioritized the soil organic content (SOC) and well-functioning subsurface drainage as the main objects of their attention, and these were clearly ahead of future use of irrigation. Taking care of subsurface drainage, soil structure, SOC and functionality is the long-term means to maintain and improve sustainability and productivity, while the implementation of irrigation is a more flexible, one-off measure that requires short-term reactivity as an adaptation option.

Suggested Citation

  • Peltonen-Sainio, Pirjo & Sorvali, Jaana & Kaseva, Janne, 2021. "Finnish farmers’ views towards fluctuating and changing precipitation patterns pave the way for the future," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002766
    DOI: 10.1016/j.agwat.2021.107011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heidi Webber & Frank Ewert & Jørgen E. Olesen & Christoph Müller & Stefan Fronzek & Alex C. Ruane & Maryse Bourgault & Pierre Martre & Behnam Ababaei & Marco Bindi & Roberto Ferrise & Robert Finger & , 2018. "Diverging importance of drought stress for maize and winter wheat in Europe," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Jari Lyytimäki & Hanna-Liisa Kangas & Erkki Mervaala & Suvi Vikström, 2020. "Muted by a Crisis? COVID-19 and the Long-Term Evolution of Climate Change Newspaper Coverage," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    3. Rosa Francaviglia & Jorge Álvaro-Fuentes & Claudia Di Bene & Lingtong Gai & Kristiina Regina & Eila Turtola, 2019. "Diversified Arable Cropping Systems and Management Schemes in Selected European Regions Have Positive Effects on Soil Organic Carbon Content," Agriculture, MDPI, vol. 9(12), pages 1-18, December.
    4. Editorial, 2020. "Covid-19 and Climate Change," Journal, Review of Agrarian Studies, vol. 10(1), pages 5-6, January-J.
    5. Peltonen-Sainio, Pirjo & Jauhiainen, Lauri, 2019. "Unexploited potential to diversify monotonous crop sequencing at high latitudes," Agricultural Systems, Elsevier, vol. 174(C), pages 73-82.
    6. Delphine Deryng & Joshua Elliott & Christian Folberth & Christoph Müller & Thomas A. M. Pugh & Kenneth J. Boote & Declan Conway & Alex C. Ruane & Dieter Gerten & James W. Jones & Nikolay Khabarov & St, 2016. "Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity," Nature Climate Change, Nature, vol. 6(8), pages 786-790, August.
    7. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Andrea Baranzini & Stefano Carattini & Linda Tesauro, 2021. "Designing Effective and Acceptable Road Pricing Schemes: Evidence from the Geneva Congestion Charge," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 417-482, July.
    3. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    4. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    5. Patrycja Klusak & Matthew Agarwala & Matt Burke & Moritz Kraemer & Kamiar Mohaddes, 2023. "Rising Temperatures, Falling Ratings: The Effect of Climate Change on Sovereign Creditworthiness," Management Science, INFORMS, vol. 69(12), pages 7468-7491, December.
    6. Francine Mestrum, 2020. "Universal Social Protection and Health Care as a Social Common," Development, Palgrave Macmillan;Society for International Deveopment, vol. 63(2), pages 238-243, December.
    7. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    8. Susan Aaronson, 2021. "Can Trade Agreements Solve the Wicked Problem of Disinformation," Working Papers 2021-12, The George Washington University, Institute for International Economic Policy.
    9. Nguyen, Minh-Hoang & Vuong, Quan-Hoang, 2020. "The third finding concerning a missing cultural value: a bibliometric analysis using the Web of Science," OSF Preprints jbcx3, Center for Open Science.
    10. Pirjo Peltonen-Sainio & Lauri Jauhiainen, 2019. "Risk of Low Productivity is Dependent on Farm Characteristics: How to Turn Poor Performance into an Advantage," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    11. Zeynep Clulow & Michele Ferguson & Peta Ashworth & David Reiner, 2021. "Political ideology and public views of the energy transition in Australia and the UK," Working Papers EPRG2106, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Nestor Goicoechea & Luis María Abadie, 2021. "Optimal Slow Steaming Speed for Container Ships under the EU Emission Trading System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    13. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    14. Timothy J. Garrett & Matheus R. Grasselli & Stephen Keen, 2020. "Past production constrains current energy demands: persistent scaling in global energy consumption and implications for climate change mitigation," Papers 2006.03718, arXiv.org.
    15. Ölkers, Tim & Liu, Shuang & Mußhoff, Oliver, 2023. "A typology of Malian farmers and their credit repayment performance - An unsupervised machine learning approach," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334547, Agricultural Economics Society - AES.
    16. Luo, Shihua & Hu, Weihao & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2022. "Flexibility enhancement measures under the COVID-19 pandemic – A preliminary comparative analysis in Denmark, the Netherlands, and Sichuan of China," Energy, Elsevier, vol. 239(PC).
    17. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    18. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    19. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    20. Zhu Liu & Zhu Deng & Philippe Ciais & Jianguang Tan & Biqing Zhu & Steven J. Davis & Robbie Andrew & Olivier Boucher & Simon Ben Arous & Pep Canadel & Xinyu Dou & Pierre Friedlingstein & Pierre Gentin, 2021. "Global Daily CO$_2$ emissions for the year 2020," Papers 2103.02526, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.