IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377419323789.html
   My bibliography  Save this article

Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management

Author

Listed:
  • Yang, Meijian
  • Wang, Guiling
  • Lazin, Rehenuma
  • Shen, Xinyi
  • Anagnostou, Emmanouil

Abstract

Soil moisture prior to the planting time can influence crop yield through affecting seedling rooting and emergence, making it an important factor in agronomic management. However, the degree to which initial soil moisture influences crop yield has not been quantified, especially in emerging regions where food security is a major challenge and field data on soil moisture and meteorological conditions are sparse. Here, we quantify the sensitivity of crop yield and production to initial soil moisture conditions in the Upper Blue Nile Basin (UBNB) of Ethiopia making use of a process-based spatially distributed crop model (DSSAT) linked to a hydrologic model (CREST), and assess the potential of soil moisture management in promoting agricultural outcome. Modeling results suggest that the cereal crop yield and production increase with initial soil moisture, and show a higher sensitivity in eastern UBNB than western UBNB and during dry years than wet years. In some areas of eastern UBNB, compared to normal soil moisture conditions, extremely wet initial soil can double the crop yield; in extremely dry years, wetting the soil at planting could prevent crop failure and improve crop yield to a level at or even above that of an average precipitation year. Increasing the initial soil moisture from extremely dry to extremely wet conditions leads to an additional production of 2.3 × 105, 7.7 × 105, 4.5 × 105, and 2.7 × 105 tons for barley, maize, sorghum, and wheat in UBNB respectively. The resulting improvement in total production is especially effective over eastern UBNB. These findings can provide guidance for farmers and decision makers in water allocation and optimization, and thus help improve Ethiopia’s food security.

Suggested Citation

  • Yang, Meijian & Wang, Guiling & Lazin, Rehenuma & Shen, Xinyi & Anagnostou, Emmanouil, 2021. "Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419323789
    DOI: 10.1016/j.agwat.2020.106430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419323789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Paul J. Block & Kenneth Strzepek & Mark W. Rosegrant & Xinshen Diao, 2008. "Impacts of considering climate variability on investment decisions in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 39(2), pages 171-181, September.
    3. Erkossa, Teklu & Awulachew, Seleshi Bekele & Haileslassie, A. & Yilma, Aster Denekew, 2009. "Impacts of improving water management of smallholder agriculture in the Upper Blue Nile Basin," Conference Papers h042504, International Water Management Institute.
    4. Ma, Dedi & Chen, Lei & Qu, Hongchao & Wang, Yilin & Misselbrook, Tom & Jiang, Rui, 2018. "Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 202(C), pages 166-173.
    5. Yan, Zhenxing & Gao, Chao & Ren, Yujie & Zong, Rui & Ma, Yuzhao & Li, Quanqi, 2017. "Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 186(C), pages 21-28.
    6. Schmidt, Emily & Tadesse, Fanaye, 2014. "Sustainable agriculture in the Blue Nile Basin: land and watershed management practices in Ethiopia," Environment and Development Economics, Cambridge University Press, vol. 19(5), pages 648-667, October.
    7. A. D. Teklesadik & T. Alemayehu & A. van Griensven & R. Kumar & S. Liersch & S. Eisner & J. Tecklenburg & S. Ewunte & X. Wang, 2017. "Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile basin using ensemble of hydrological models and global climate models," Climatic Change, Springer, vol. 141(3), pages 517-532, April.
    8. Mo, Yan & Li, Guangyong & Wang, Dan, 2017. "A sowing method for subsurface drip irrigation that increases the emergence rate, yield, and water use efficiency in spring corn," Agricultural Water Management, Elsevier, vol. 179(C), pages 288-295.
    9. Paredes, Paula & Rodrigues, Gonçalo C. & Cameira, Maria do Rosário & Torres, Maria Odete & Pereira, Luis S., 2017. "Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 132-143.
    10. Kazi Ahmed & Guiling Wang & Miao Yu & Jawoo Koo & Liangzhi You, 2015. "Potential impact of climate change on cereal crop yield in West Africa," Climatic Change, Springer, vol. 133(2), pages 321-334, November.
    11. Soulis, Konstantinos X. & Elmaloglou, Stamatios & Dercas, Nicholas, 2015. "Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems," Agricultural Water Management, Elsevier, vol. 148(C), pages 258-268.
    12. Block, Paul J. & Strzepek, Kenneth & Rosegrant, Mark & Diao, Xinshen, 2008. "How can African agriculture adapt to climate change: Impacts of considering climate variability on investment decisions in Ethiopia," Research briefs 15(12), International Food Policy Research Institute (IFPRI).
    13. Block, Paul J. & Strzepek, Kenneth & Rosegrant, Mark & Diao, Xinshen, 2008. "Impacts of considering climate variability on investment decisions in Ethiopia [in Amharic]:," Research briefs 15(12)AMH, International Food Policy Research Institute (IFPRI).
    14. K.J. Boote & J.W. Jones & G. Hoogenboom & J.W. White, 2010. "The Role of Crop Systems Simulation in Agriculture and Environment," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 1(1), pages 41-54, January.
    15. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahad Khan Khadim & Zoi Dokou & Rehenuma Lazin & Amvrossios C. Bagtzoglou & Emmanouil Anagnostou, 2023. "Groundwater Modeling to Assess Climate Change Impacts and Sustainability in the Tana Basin, Upper Blue Nile, Ethiopia," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    2. Yang, Meijian & Wang, Guiling, 2023. "Heat stress to jeopardize crop production in the US Corn Belt based on downscaled CMIP5 projections," Agricultural Systems, Elsevier, vol. 211(C).
    3. Subhadarsini Das & Jew Das & N. V. Umamahesh, 2023. "A Non-Stationary Based Approach to Understand the Propagation of Meteorological to Agricultural Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2483-2504, May.
    4. Stergios Emmanouil & Jason Philhower & Sophie Macdonald & Fahad Khan Khadim & Meijian Yang & Ezana Atsbeha & Himaja Nagireddy & Natalie Roach & Elizabeth Holzer & Emmanouil N. Anagnostou, 2021. "A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    5. Khadim, Fahad Khan & Dokou, Zoi & Bagtzoglou, Amvrossios C. & Yang, Meijian & Lijalem, Girmachew Addisu & Anagnostou, Emmanouil, 2021. "A numerical framework to advance agricultural water management under hydrological stress conditions in a data scarce environment," Agricultural Water Management, Elsevier, vol. 254(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kostandini, Genti & La Rovere, Roberto & Abdoulaye, Tahirou, 2013. "Potential impacts of increasing average yields and reducing maize yield variability in Africa," Food Policy, Elsevier, vol. 43(C), pages 213-226.
    2. Blankespoor,Brian & Ru,Yating & Wood-Sichra,Ulrike & Chambers,Thomas Timothy & You,Liangzhi & Kalvelagen,Erwin, 2022. "Estimating Local Agricultural GDP across the World," Policy Research Working Paper Series 10109, The World Bank.
    3. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    4. Bazzana, Davide & Foltz, Jeremy & Zhang, Ying, 2022. "Impact of climate smart agriculture on food security: An agent-based analysis," Food Policy, Elsevier, vol. 111(C).
    5. Karen Fisher-Vanden & Ian Sue Wing & Elisa Lanzi & David Popp, 2013. "Modeling climate change feedbacks and adaptation responses: recent approaches and shortcomings," Climatic Change, Springer, vol. 117(3), pages 481-495, April.
    6. Thomas Berger & Christian Troost & Tesfamicheal Wossen & Evgeny Latynskiy & Kindie Tesfaye & Sika Gbegbelegbe, 2017. "Can smallholder farmers adapt to climate variability, and how effective are policy interventions? Agent-based simulation results for Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(6), pages 693-706, November.
    7. Julia Reis & Julie Shortridge, 2020. "Impact of Uncertainty Parameter Distribution on Robust Decision Making Outcomes for Climate Change Adaptation under Deep Uncertainty," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 494-511, March.
    8. Bazzana, Davide & Gilioli, Gianni & Simane, Belay & Zaitchik, Benjamin, 2021. "Analyzing constraints in the water-energy-food nexus: The case of eucalyptus plantation in Ethiopia," Ecological Economics, Elsevier, vol. 180(C).
    9. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Ding, Jinli & Wu, Jicheng & Ding, Dianyuan & Yang, Yonghui & Gao, Cuimin & Hu, Wei, 2021. "Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system," Agricultural Water Management, Elsevier, vol. 254(C).
    11. Nicole D. Peterson, 2012. "Developing Climate Adaptation: The Intersection of Climate Research and Development Programmes in Index Insurance," Development and Change, International Institute of Social Studies, vol. 43(2), pages 557-584, March.
    12. Wei Zhu & Ruiquan Qiao & Rui Jiang, 2022. "Modelling of Water and Nitrogen Flow in a Rain-Fed Ridge-Furrow Maize System with Plastic Mulch," Land, MDPI, vol. 11(9), pages 1-18, September.
    13. Xiao, Liangang & Wei, Xi & Wang, Chunying & Zhao, Rongqin, 2023. "Plastic film mulching significantly boosts crop production and water use efficiency but not evapotranspiration in China," Agricultural Water Management, Elsevier, vol. 275(C).
    14. Zhang, Jinxia & Du, Liangliang & Xing, Zisheng & Zhang, Rui & Li, Fuqiang & Zhong, Tao & Ren, Fangfang & Yin, Meng & Ding, Lin & Liu, Xingrong, 2023. "Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower," Agricultural Water Management, Elsevier, vol. 288(C).
    15. Mahboobe Ghobadi & Mahdi Gheysari & Mohammad Shayannejad & Hamze Dokoohaki, 2023. "Analyzing the Effects of Planting Date on the Uncertainty of CERES-Maize and Its Potential to Reduce Yield Gap in Arid and Mediterranean Climates," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    16. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    17. Westhoek, Henk & Ingram, John & van Berkum, Siemen & Hajer, Maarten, 2015. "The European food system and natural resources: Impacts and Options," 148th Seminar, November 30-December 1, 2015, The Hague, The Netherlands 229279, European Association of Agricultural Economists.
    18. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    19. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    20. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419323789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.