IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v178y2016icp89-105.html
   My bibliography  Save this article

A geo-informatics approach for estimating water resources management components and their interrelationships

Author

Listed:
  • Liaqat, Umar Waqas
  • Awan, Usman Khalid
  • McCabe, Matthew Francis
  • Choi, Minha

Abstract

A remote sensing based geo-informatics approach was developed to estimate water resources management (WRM) components across a large irrigation scheme in the Indus Basin of Pakistan. The approach provides a generalized framework for estimating a range of key water management variables and provides a management tool for the sustainable operation of similar schemes globally. A focus on the use of satellite data allowed for the quantification of relationships across a range of spatial and temporal scales. Variables including actual and crop evapotranspiration, net and gross irrigation, net and gross groundwater use, groundwater recharge, net groundwater recharge, were estimated and then their interrelationships explored across the Hakra Canal command area. Spatially distributed remotely sensed estimates of actual evapotranspiration (ETa) rates were determined using the Surface Energy Balance System (SEBS) model and evaluated against ground-based evaporation calculated from the advection-aridity method. Analysis of ETa simulations across two cropping season, referred to as Kharif and Rabi, yielded Pearson correlation (R) values of 0.69 and 0.84, Nash-Sutcliffe criterion (NSE) of 0.28 and 0.63, percentage bias of −3.85% and 10.6% and root mean squared error (RMSE) of 10.6mm and 12.21mm for each season, respectively. For the period of study between 2008 and 2014, it was estimated that an average of 0.63mmday−1 water was supplied through canal irrigation against a crop water demand of 3.81mmday−1. Approximately 1.86mmday−1 groundwater abstraction was estimated in the region, which contributed to fulfil the gap between crop water demand and canal water supply. Importantly, the combined canal, groundwater and rainfall sources of water only met 70% of the crop water requirements. As such, the difference between recharge and discharge showed that groundwater depletion was around −115mmyear−1 during the six year study period. Analysis indicated that monthly changes in ETa were strongly correlated (R=0.94) with groundwater abstraction and rainfall, with the strength of this relationship significantly (p<0.01 and 0.05) impacted by cropping seasons and land use practices. Similarly, the net groundwater recharge showed a good positive correlation (R) of 0.72 with rainfall during Kharif, and a correlation of 0.75 with canal irrigation during Rabi, at a significance level of p<0.01. Overall, the results provide insight into the interrelationships between key WRM components and the variation of these through time, offering information to improve the management and strategic planning of available water resources in this region.

Suggested Citation

  • Liaqat, Umar Waqas & Awan, Usman Khalid & McCabe, Matthew Francis & Choi, Minha, 2016. "A geo-informatics approach for estimating water resources management components and their interrelationships," Agricultural Water Management, Elsevier, vol. 178(C), pages 89-105.
  • Handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:89-105
    DOI: 10.1016/j.agwat.2016.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741630347X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winston Yu & Yi-Chen Yang & Andre Savitsky & Donald Alford & Casey Brown & James Wescoat & Dario Debowicz & Sherman Robinson, 2013. "Indus Basin of Pakistan : Impacts of Climate Risks on Water and Agriculture," World Bank Publications - Books, The World Bank Group, number 13834, December.
    2. Chowdary, V.M. & Chandran, R. Vinu & Neeti, N. & Bothale, R.V. & Srivastava, Y.K. & Ingle, P. & Ramakrishnan, D. & Dutta, D. & Jeyaram, A. & Sharma, J.R. & Singh, Ravindra, 2008. "Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS," Agricultural Water Management, Elsevier, vol. 95(7), pages 754-766, July.
    3. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2010. "Methodology for Quantifying Groundwater Abstractions for Agriculture via Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 795-814, March.
    4. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    5. Ullah, M. K., 2001. "Spatial distribution of reference and potential evapotranspiration across the Indus Basin Irrigation Systems," IWMI Working Papers H029426, International Water Management Institute.
    6. Yuei-An Liou & Sanjib Kumar Kar, 2014. "Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review," Energies, MDPI, vol. 7(5), pages 1-29, April.
    7. Mastrocicco, M. & Colombani, N. & Salemi, E. & Castaldelli, G., 2010. "Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands," Agricultural Water Management, Elsevier, vol. 97(9), pages 1389-1398, September.
    8. Kirby, J.M. & Ahmad, M.D. & Mainuddin, M. & Palash, W. & Quadir, M.E. & Shah-Newaz, S.M. & Hossain, M.M., 2015. "The impact of irrigation development on regional groundwater resources in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 264-276.
    9. Hertzog, Thomas & Poussin, Jean-Christophe & Tangara, Bréhima & Kouriba, Indé & Jamin, Jean-Yves, 2014. "A role playing game to address future water management issues in a large irrigated system: Experience from Mali," Agricultural Water Management, Elsevier, vol. 137(C), pages 1-14.
    10. Anuraga, T.S. & Ruiz, L. & Kumar, M.S. Mohan & Sekhar, M. & Leijnse, A., 2006. "Estimating groundwater recharge using land use and soil data: A case study in South India," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 65-76, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Mohsin Waqas & Muhammad Waseem & Sikandar Ali & Megersa Kebede Leta & Adnan Noor Shah & Usman Khalid Awan & Syed Hamid Hussain Shah & Tao Yang & Sami Ullah, 2021. "Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.
    2. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    3. Kirby, Mac & Ahmad, Mobin-ud-Din & Mainuddin, Mohammed & Khaliq, Tasneem & Cheema, M.J.M., 2017. "Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050," Agricultural Water Management, Elsevier, vol. 179(C), pages 34-46.
    4. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    5. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    7. Wagle, Pradeep & Gowda, Prasanna H. & Northup, Brian K., 2019. "Dynamics of evapotranspiration over a non-irrigated alfalfa field in the Southern Great Plains of the United States," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Xue, Jingyuan & Fulton, Allan & Kisekka, Isaya, 2021. "Evaluating the role of remote sensing-based energy balance models in improving site-specific irrigation management for young walnut orchards," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Santiago Castaño & David Sanz & Juan Gómez-Alday, 2013. "Sensitivity of a Groundwater Flow Model to Both Climatic Variations and Management Scenarios in a Semi-arid Region of SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2089-2101, May.
    10. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    11. Bin Yang & Jun He, 2021. "Global Land Grabbing: A Critical Review of Case Studies across the World," Land, MDPI, vol. 10(3), pages 1-19, March.
    12. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    13. Robert-Jan Den Haan & Mascha C. Van der Voort, 2018. "On Evaluating Social Learning Outcomes of Serious Games to Collaboratively Address Sustainability Problems: A Literature Review," Sustainability, MDPI, vol. 10(12), pages 1-26, December.
    14. Mojid, Mohammad A. & Mainuddin, Mohammed & Murad, Khandakar Faisal Ibn & Kirby, John Mac, 2021. "Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh," Agricultural Water Management, Elsevier, vol. 251(C).
    15. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    16. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    17. Clémence Moreau & Cécile Barnaud & Raphaël Mathevet, 2019. "Conciliate Agriculture with Landscape and Biodiversity Conservation: A Role-Playing Game to Explore Trade-Offs among Ecosystem Services through Social Learning," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    18. Muhammad Irshad Ahmad & Hengyun Ma, 2020. "Climate Change and Livelihood Vulnerability in Mixed Crop–Livestock Areas: The Case of Province Punjab, Pakistan," Sustainability, MDPI, vol. 12(2), pages 1-31, January.
    19. Nicolò Colombani & Micòl Mastrocicco & Beatrice Giambastiani, 2015. "Predicting Salinization Trends in a Lowland Coastal Aquifer: Comacchio (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 603-618, January.
    20. Falk, Thomas & Kumar, Shalander & Srigiri, Srinivasa, 2019. "Experimental games for developing institutional capacity to manage common water infrastructure in India," Agricultural Water Management, Elsevier, vol. 221(C), pages 260-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:89-105. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.