IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i4d10.1007_s11269-020-02526-3.html
   My bibliography  Save this article

Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale

Author

Listed:
  • Xiaojing Ni

    (Mississippi State University)

  • Prem B. Parajuli

    (Mississippi State University)

  • Ying Ouyang

    (USDA Forest Service, Center for Bottomland Hardwoods Research)

Abstract

Over the last several decades, increased groundwater usage by agriculture with a consequence of groundwater resource depletion has motivated the discussion of sustainability of groundwater resource. In this study, to investigate the impacts of agricultural best management practices (BMPs) on groundwater level, two kinds of conservation practices and five scenarios of tail water recovery pond and crop rotation were simulated by various groundwater recharge and pumping plans in Soil and Water Assessment Tool (SWAT) and MODFLOW models in an agriculture watershed in Mississippi, U.S.. The calibrated and validated ground water model indicated coefficient of determination (R2) of 0.81 and Nash–Sutcliffe model efficiency coefficient (NSE) of 0.79 respectively. The results from this study showed that the groundwater recharge changed with irrigation plans and surface hydrological impact of management practices. In addition, it determined that tail water recovery pond could help mitigate groundwater depletion. The groundwater recharge due to continuous corn crop scenario was 7% higher in average than that of the continuous soybean. Non-growing season groundwater recharge may be critical for groundwater recovery. The average groundwater level was increased continuous corn scenario by 15%, continuous soybean by 13%, and corn-soybean by 14% as compare to the baseline scenario with rice planted. Results of this study can be helpful for planning on how various BMPs impact on groundwater.

Suggested Citation

  • Xiaojing Ni & Prem B. Parajuli & Ying Ouyang, 2020. "Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1553-1566, March.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:4:d:10.1007_s11269-020-02526-3
    DOI: 10.1007/s11269-020-02526-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02526-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02526-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu Xu & Guanhua Huang & Zhongyi Qu & Luis Pereira, 2011. "Using MODFLOW and GIS to Assess Changes in Groundwater Dynamics in Response to Water Saving Measures in Irrigation Districts of the Upper Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 2035-2059, June.
    2. Dakhlalla, Abdullah O. & Parajuli, Prem B. & Ouyang, Ying & Schmitz, Darrel W., 2016. "Evaluating the impacts of crop rotations on groundwater storage and recharge in an agricultural watershed," Agricultural Water Management, Elsevier, vol. 163(C), pages 332-343.
    3. Ni, Xiaojing & Parajuli, Prem B., 2018. "Evaluation of the impacts of BMPs and tailwater recovery system on surface and groundwater using satellite imagery and SWAT reservoir function," Agricultural Water Management, Elsevier, vol. 210(C), pages 78-87.
    4. Dechmi, F. & Skhiri, A., 2013. "Evaluation of best management practices under intensive irrigation using SWAT model," Agricultural Water Management, Elsevier, vol. 123(C), pages 55-64.
    5. White, D. A. & Dunin, F. X. & Turner, N. C. & Ward, B. H. & Galbraith, J. H., 2002. "Water use by contour-planted belts of trees comprised of four Eucalyptus species," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 133-152, February.
    6. Parajuli, P.B. & Jayakody, P. & Sassenrath, G.F. & Ouyang, Y., 2016. "Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin," Agricultural Water Management, Elsevier, vol. 168(C), pages 112-124.
    7. Anuraga, T.S. & Ruiz, L. & Kumar, M.S. Mohan & Sekhar, M. & Leijnse, A., 2006. "Estimating groundwater recharge using land use and soil data: A case study in South India," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 65-76, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Chen & Binbin Lu & Chongyu Xu & Xingwei Chen & Meibing Liu & Lu Gao & Haijun Deng, 2022. "Uncertainty Evaluation of Best Management Practice Effectiveness Based on the AnnAGNPS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1307-1321, March.
    2. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    3. Daniel Morales Martínez & Alexandre Gori Maia & Junior Ruiz Garcia, 2022. "Spatial diffusion of efficient irrigation systems: a study of São Paulo, Brazil," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 690-712, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Risal, Avay & Parajuli, Prem B. & Dash, Padmanava & Ouyang, Ying & Linhoss, Anna, 2020. "Sensitivity of hydrology and water quality to variation in land use and land cover data," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    3. Ni, Xiaojing & Parajuli, Prem B., 2018. "Evaluation of the impacts of BMPs and tailwater recovery system on surface and groundwater using satellite imagery and SWAT reservoir function," Agricultural Water Management, Elsevier, vol. 210(C), pages 78-87.
    4. K. Raneesh & Santosh Thampi, 2013. "A Simple Semi-distributed Hydrologic Model to Estimate Groundwater Recharge in a Humid Tropical Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1517-1532, March.
    5. Vivek Venishetty & Prem B. Parajuli, 2022. "Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed," Agriculture, MDPI, vol. 12(4), pages 1-14, March.
    6. Olufemi Abimbola & Aaron Mittelstet & Tiffany Messer & Elaine Berry & Ann van Griensven, 2020. "Modeling and Prioritizing Interventions Using Pollution Hotspots for Reducing Nutrients, Atrazine and E. coli Concentrations in a Watershed," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    7. Feng, Gary & Jin, Wei & Ouyang, Ying & Huang, Yanbo, 2024. "The role of changing land use and irrigation scheduling in groundwater depletion mitigation in a humid region," Agricultural Water Management, Elsevier, vol. 291(C).
    8. Avay Risal & Prem B. Parajuli, 2022. "Evaluation of the Impact of Best Management Practices on Streamflow, Sediment and Nutrient Yield at Field and Watershed Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1093-1105, February.
    9. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    10. Dipesh Nepal & Prem Parajuli & Ying Ouyang & Filip To & Nuwan Wijewardane & Vivek Venishetty, 2024. "Evaluation of Wetland Area Effects on Hydrology and Water Quality at Watershed Scale," Resources, MDPI, vol. 13(8), pages 1-23, August.
    11. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Meredith, Elizabeth & Blais, Nicole, 2019. "Quantifying irrigation recharge sources using groundwater modeling," Agricultural Water Management, Elsevier, vol. 214(C), pages 9-16.
    13. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    14. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    15. Fakhri Manghi & Dennis Williams & Jack Safely & Moshrik Hamdi, 2012. "Groundwater Flow Modeling of the Arlington Basin to Evaluate Management Strategies for Expansion of the Arlington Desalter Water Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 21-41, January.
    16. Weibin Zhang & Xiaochun Zha & Jiaxing Li & Wei Liang & Yugai Ma & Dongmei Fan & Sha Li, 2014. "Spatiotemporal Change of Blue Water and Green Water Resources in the Headwater of Yellow River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4715-4732, October.
    17. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    18. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    19. Yu Fan & Haorui Chen & Zhanyi Gao & Benyan Fang & Xiangkun Liu, 2023. "A Model Coupling Water Resource Allocation and Canal Optimization for Water Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1341-1365, February.
    20. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:4:d:10.1007_s11269-020-02526-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.