IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v92y2007i1-3p115-139.html
   My bibliography  Save this article

Modelling the effect of groundwater depth on yield-increasing interventions in rainfed lowland rice in Central Java, Indonesia

Author

Listed:
  • Boling, A.A.
  • Bouman, B. A.M.
  • Tuong, T.P.
  • Murty, M.V.R.
  • Jatmiko, S.Y.

Abstract

No abstract is available for this item.

Suggested Citation

  • Boling, A.A. & Bouman, B. A.M. & Tuong, T.P. & Murty, M.V.R. & Jatmiko, S.Y., 2007. "Modelling the effect of groundwater depth on yield-increasing interventions in rainfed lowland rice in Central Java, Indonesia," Agricultural Systems, Elsevier, vol. 92(1-3), pages 115-139, January.
  • Handle: RePEc:eee:agisys:v:92:y:2007:i:1-3:p:115-139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(06)00082-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    2. Tuong, T.P. & Kam, S.P. & Wade, L. & Pandey, S. & Bouman, B.A.M. & Hardy, B., 2000. "Characterizing and Understanding Rainfed Environments," IRRI Books, International Rice Research Institute (IRRI), number 281829.
    3. Bouman, B.A.M. & van Laar, H.H., 2006. "Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions," Agricultural Systems, Elsevier, vol. 87(3), pages 249-273, March.
    4. Bouman, B.A.M. & Kropff, M.J. & Wopereis, M.C.S. & ten Berge, H.F.M. & van Laar, H.H., 2001. "ORYZA2000: modeling lowland rice," IRRI Books, International Rice Research Institute (IRRI), number 281825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Xuezhi & Shao, Dongguo & Liu, Huanhuan, 2014. "Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 132(C), pages 69-78.
    2. Xu, Baoli & Shao, Dongguo & Fang, Longzhang & Yang, Xia & Chen, Shu & Gu, Wenquan, 2019. "Modelling percolation and lateral seepage in a paddy field-bund landscape with a shallow groundwater table," Agricultural Water Management, Elsevier, vol. 214(C), pages 87-96.
    3. Jing, Qi & Keulen, Herman van & Hengsdijk, Huib, 2010. "Modeling biomass, nitrogen and water dynamics in rice-wheat rotations," Agricultural Systems, Elsevier, vol. 103(7), pages 433-443, September.
    4. Jing, Qi & Bouman, Bas & van Keulen, Herman & Hengsdijk, Huib & Cao, Weixing & Dai, Tingbo, 2008. "Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia," Agricultural Systems, Elsevier, vol. 98(3), pages 177-188, October.
    5. Zhang, Jing & Chen, Yi & Zhang, Zhao, 2020. "A remote sensing-based scheme to improve regional crop model calibration at sub-model component level," Agricultural Systems, Elsevier, vol. 181(C).
    6. Zhang, He & Li, Duansheng & Zhou, Zhiguo & Zahoor, Rizwan & Chen, Binglin & Meng, Yali, 2017. "Soil water and salt affect cotton (Gossypium hirsutum L.) photosynthesis, yield and fiber quality in coastal saline soil," Agricultural Water Management, Elsevier, vol. 187(C), pages 112-121.
    7. Heuvelmans, Griet, 2010. "Development and credibility assessment of a metamodel relating water table depth to agricultural production," Agricultural Water Management, Elsevier, vol. 97(11), pages 1731-1741, November.
    8. de Silva, C. Shanthi & Rushton, K.R., 2008. "Representation of rainfed valley ricefields using a soil-water balance model," Agricultural Water Management, Elsevier, vol. 95(3), pages 271-282, March.
    9. Xu, Baoli & Shao, Dongguo & Tan, Xuezhi & Yang, Xia & Gu, Wenquan & Li, Haoxin, 2017. "Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields," Agricultural Water Management, Elsevier, vol. 192(C), pages 149-158.
    10. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    11. Grotelüschen, Kristina & Gaydon, Donald S. & Langensiepen, Matthias & Ziegler, Susanne & Kwesiga, Julius & Senthilkumar, Kalimuthu & Whitbread, Anthony M. & Becker, Mathias, 2021. "Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Boling, A.A. & Tuong, T.P. & van Keulen, H. & Bouman, B.A.M. & Suganda, H. & Spiertz, J.H.J., 2010. "Yield gap of rainfed rice in farmers' fields in Central Java, Indonesia," Agricultural Systems, Elsevier, vol. 103(5), pages 307-315, June.
    13. Hua, Keji & He, Jun & Liao, Bin & He, Tianzhong & Yang, Peng & Zhang, Lei, 2023. "Multi-objective decision-making for efficient utilization of water and fertilizer in paddy fields: A case study in Southern China," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Rodenburg, Jonne & Zwart, Sander J. & Kiepe, Paul & Narteh, Lawrence T. & Dogbe, Wilson & Wopereis, Marco C.S., 2014. "Sustainable rice production in African inland valleys: Seizing regional potentials through local approaches," Agricultural Systems, Elsevier, vol. 123(C), pages 1-11.
    15. Marcaida, Manuel & Farhat, Yasmine & Muth, E-Nieng & Cheythyrith, Chou & Hok, Lyda & Holtgrieve, Gordon & Hossain, Faisal & Neumann, Rebecca & Kim, Soo-Hyung, 2021. "A spatio-temporal analysis of rice production in Tonle Sap floodplains in response to changing hydrology and climate," Agricultural Water Management, Elsevier, vol. 258(C).
    16. Timsina, J. & Buresh, R.J. & Dobermann, A. & Dixon, J. (ed.), 2011. "Rice-maize systems in Asia: current situation and potential," IRRI Books, International Rice Research Institute (IRRI), number 164490.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    2. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    3. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    4. Hayashi, Keiichi & Llorca, Lizzida & Rustini, Sri & Setyanto, Prihasto & Zaini, Zulkifli, 2018. "Reducing vulnerability of rainfed agriculture through seasonal climate predictions: A case study on the rainfed rice production in Southeast Asia," Agricultural Systems, Elsevier, vol. 162(C), pages 66-76.
    5. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    6. Boling, A.A. & Tuong, T.P. & van Keulen, H. & Bouman, B.A.M. & Suganda, H. & Spiertz, J.H.J., 2010. "Yield gap of rainfed rice in farmers' fields in Central Java, Indonesia," Agricultural Systems, Elsevier, vol. 103(5), pages 307-315, June.
    7. Feng, Liping & Bouman, B. A.M. & Tuong, T.P. & Cabangon, R.J. & Li, Yalong & Lu, Guoan & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 1-13, March.
    8. Guo, Erjing & Yang, Xiaoguang & Li, Tao & Zhang, Tianyi & Wilson, Lloyed Ted & Wang, Xiaoyu & Zheng, Dongxiao & Yang, Yubin, 2021. "Does ENSO strongly affect rice yield and water application in Northeast China?," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Dutta, S. K & Laing, Alison M. & Kumar, S. & Gathala, Mahesh K. & Singh, Ajoy K. & Gaydon, D.S. & Poulton, P., 2020. "Improved water management practices improve cropping system profitability and smallholder farmers’ incomes," Agricultural Water Management, Elsevier, vol. 242(C).
    10. Brinkhoff, James & Houborg, Rasmus & Dunn, Brian W., 2022. "Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Movedi, Ermes & Valiante, Daniele & Colosio, Alessandro & Corengia, Luca & Cossa, Stefano & Confalonieri, Roberto, 2022. "A new approach for modeling crop-weed interaction targeting management support in operational contexts: A case study on the rice weeds barnyardgrass and red rice," Ecological Modelling, Elsevier, vol. 463(C).
    12. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2021. "Observed meteorological drought trends in Bangladesh identified with the Effective Drought Index (EDI)," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Kriti Poudel & Ram Hari Timilsina & Anish Bhattarai, 2020. "Effect Of Crop Establishment Methods On Yield Of Spring Rice At Khairahani, Chitwan, Nepal," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 3(1), pages 6-11, November.
    14. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    15. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    16. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    17. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    18. Ponsioen, Thomas C. & Hengsdijk, Huib & Wolf, Joost & van Ittersum, Martin K. & Rotter, Reimund P. & Son, Tran Thuc & Laborte, Alice G., 2006. "TechnoGIN, a tool for exploring and evaluating resource use efficiency of cropping systems in East and Southeast Asia," Agricultural Systems, Elsevier, vol. 87(1), pages 80-100, January.
    19. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    20. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:92:y:2007:i:1-3:p:115-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.