IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v214y2019icp87-96.html
   My bibliography  Save this article

Modelling percolation and lateral seepage in a paddy field-bund landscape with a shallow groundwater table

Author

Listed:
  • Xu, Baoli
  • Shao, Dongguo
  • Fang, Longzhang
  • Yang, Xia
  • Chen, Shu
  • Gu, Wenquan

Abstract

Percolation in farmland increasingly is needed to be quantified to improve water use efficiency and mitigate accompanying nutrient loss. Experiments were conducted to measure the soil properties and moisture in a consolidated paddy field-bund landscape during the rice growing season in 2014–2015. The HYDRUS-2D model simulated soil water movement in the landscape with an excellent performance. In the study, the soil properties of the bund were similar to those of the paddy field after land consolidation. Modelling results showed that most percolation in the paddy field occurred along with water input (rainfall and irrigation). Groundwater capillary rise was detected in the coupled conditions of low soil moisture in the root zone and the shallow groundwater table. Percolation accounted for 23.2%–31.3% of water input, and groundwater capillary rise contributed 26.1%–31.2% to rice evapotranspiration. The variation of the soil water content of the bund indicated that lateral infiltration from the paddy field to the bund primarily occurred in the upper bund adjacent to the field, while the lateral seepage was only found in the lower bund below the groundwater level. Vertical percolation and lateral seepage accounted for 10.5%–14.8% of water input lost through the bund, in which the lateral seepage contributed 77.6%–88.4%. Scenario simulation with the calibrated model investigated the impacts of saturated hydraulic conductivity (Ks) and the irrigation amount on the percolation and lateral seepage in the landscape. The results implied that percolation increased with the increasing Ks of soil. The percolation in the paddy-bund landscape and lateral seepage were most influenced by the illuvial horizon layer of the paddy field. Furthermore, a higher irrigation amount decreased the groundwater capillary rise and aggravated percolation linearly, while it had few effects on lateral seepage. The research suggests a potential adjustment in making irrigation schedules and conducting land consolidation in the rice-planting areas with shallow groundwater depths.

Suggested Citation

  • Xu, Baoli & Shao, Dongguo & Fang, Longzhang & Yang, Xia & Chen, Shu & Gu, Wenquan, 2019. "Modelling percolation and lateral seepage in a paddy field-bund landscape with a shallow groundwater table," Agricultural Water Management, Elsevier, vol. 214(C), pages 87-96.
  • Handle: RePEc:eee:agiwat:v:214:y:2019:i:c:p:87-96
    DOI: 10.1016/j.agwat.2018.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418304244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xudong & Zhao, Yong & Xiao, Weihua & Yang, Mingzhi & Shen, Yanjun & Min, Leilei, 2017. "Soil moisture dynamics and implications for irrigation of farmland with a deep groundwater table," Agricultural Water Management, Elsevier, vol. 192(C), pages 138-148.
    2. Li, Yong & Šimůnek, Jirka & Zhang, Zhentin & Jing, Longfei & Ni, Lixiao, 2015. "Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 148(C), pages 213-222.
    3. Tan, Xuezhi & Shao, Dongguo & Liu, Huanhuan, 2014. "Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 132(C), pages 69-78.
    4. Wopereis, M. C. S. & Bouman, B. A. M. & Kropff, M. J. & ten Berge, H. F. M. & Maligaya, A. R., 1994. "Water use efficiency of flooded rice fields I. Validation of the soil-water balance model SAWAH," Agricultural Water Management, Elsevier, vol. 26(4), pages 277-289, December.
    5. Kukal, S. S. & Aggarwal, G. C., 2002. "Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field," Agricultural Water Management, Elsevier, vol. 57(1), pages 49-59, September.
    6. Schmitter, Petra & Zwart, Sander J. & Danvi, Alexandre & Gbaguidi, Félix, 2015. "Contributions of lateral flow and groundwater to the spatio-temporal variation of irrigated rice yields and water productivity in a West-African inland valley," Agricultural Water Management, Elsevier, vol. 152(C), pages 286-298.
    7. Roost, N. & Cai, X.L. & Molden, D. & Cui, Y.L., 2008. "Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part I. In-system storage characteristics," Agricultural Water Management, Elsevier, vol. 95(6), pages 698-706, June.
    8. Tsubo, M. & Fukai, S. & Tuong, T.P. & Ouk, M., 2007. "A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence," Ecological Modelling, Elsevier, vol. 204(3), pages 503-515.
    9. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    10. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    11. Xu, Baoli & Shao, Dongguo & Tan, Xuezhi & Yang, Xia & Gu, Wenquan & Li, Haoxin, 2017. "Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields," Agricultural Water Management, Elsevier, vol. 192(C), pages 149-158.
    12. Boling, A.A. & Bouman, B. A.M. & Tuong, T.P. & Murty, M.V.R. & Jatmiko, S.Y., 2007. "Modelling the effect of groundwater depth on yield-increasing interventions in rainfed lowland rice in Central Java, Indonesia," Agricultural Systems, Elsevier, vol. 92(1-3), pages 115-139, January.
    13. Li, Jiang & Wang, Xinxin & Bai, Liangliang & Mao, Xiaomin, 2017. "Quantification of lateral seepage from farmland during maize growing season in arid region," Agricultural Water Management, Elsevier, vol. 191(C), pages 85-97.
    14. Cesari de Maria, Sandra & Rienzner, Michele & Facchi, Arianna & Chiaradia, Enrico Antonio & Romani, Marco & Gandolfi, Claudio, 2016. "Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district," Agricultural Water Management, Elsevier, vol. 171(C), pages 108-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yanzhi & Chen, Ji & Sun, Yidi & Jiao, Yanting & Yang, Yi & Yuan, Xiaoqi & Lærke, Poul Erik & Wu, Qi & Chi, Daocai, 2023. "Zeolite reduces N leaching and runoff loss while increasing rice yields under alternate wetting and drying irrigation regime," Agricultural Water Management, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Baoli & Shao, Dongguo & Tan, Xuezhi & Yang, Xia & Gu, Wenquan & Li, Haoxin, 2017. "Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields," Agricultural Water Management, Elsevier, vol. 192(C), pages 149-158.
    2. de Silva, C. Shanthi & Rushton, K.R., 2008. "Representation of rainfed valley ricefields using a soil-water balance model," Agricultural Water Management, Elsevier, vol. 95(3), pages 271-282, March.
    3. Grotelüschen, Kristina & Gaydon, Donald S. & Langensiepen, Matthias & Ziegler, Susanne & Kwesiga, Julius & Senthilkumar, Kalimuthu & Whitbread, Anthony M. & Becker, Mathias, 2021. "Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Tan, Xuezhi & Shao, Dongguo & Liu, Huanhuan, 2014. "Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 132(C), pages 69-78.
    5. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Boling, A.A. & Tuong, T.P. & van Keulen, H. & Bouman, B.A.M. & Suganda, H. & Spiertz, J.H.J., 2010. "Yield gap of rainfed rice in farmers' fields in Central Java, Indonesia," Agricultural Systems, Elsevier, vol. 103(5), pages 307-315, June.
    7. Yu, Qianan & Cui, Yuanlai, 2022. "Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    8. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    9. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    10. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    11. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    12. Garg, Kaushal K. & Das, Bhabani S. & Safeeq, Mohammad & Bhadoria, Pratap B.S., 2009. "Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport," Agricultural Water Management, Elsevier, vol. 96(12), pages 1705-1714, December.
    13. Jing, Qi & Keulen, Herman van & Hengsdijk, Huib, 2010. "Modeling biomass, nitrogen and water dynamics in rice-wheat rotations," Agricultural Systems, Elsevier, vol. 103(7), pages 433-443, September.
    14. Li, Yong & Šimůnek, Jirka & Jing, Longfei & Zhang, Zhentin & Ni, Lixiao, 2014. "Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 142(C), pages 38-46.
    15. Darzi-Naftchali, Abdullah & Karandish, Fatemeh & Šimůnek, Jiří, 2018. "Numerical modeling of soil water dynamics in subsurface drained paddies with midseason drainage or alternate wetting and drying management," Agricultural Water Management, Elsevier, vol. 197(C), pages 67-78.
    16. Jing, Qi & Bouman, Bas & van Keulen, Herman & Hengsdijk, Huib & Cao, Weixing & Dai, Tingbo, 2008. "Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia," Agricultural Systems, Elsevier, vol. 98(3), pages 177-188, October.
    17. Zhang, Jing & Chen, Yi & Zhang, Zhao, 2020. "A remote sensing-based scheme to improve regional crop model calibration at sub-model component level," Agricultural Systems, Elsevier, vol. 181(C).
    18. LaHue, Gabriel T. & Linquist, Bruce A., 2021. "The contribution of percolation to water balances in water-seeded rice systems," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Er-Raki, S. & Ezzahar, J. & Merlin, O. & Amazirh, A. & Hssaine, B. Ait & Kharrou, M.H. & Khabba, S. & Chehbouni, A., 2021. "Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco," Agricultural Water Management, Elsevier, vol. 244(C).
    20. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:214:y:2019:i:c:p:87-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.