IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v132y2015icp133-144.html
   My bibliography  Save this article

Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia

Author

Listed:
  • Anwar, Muhuddin Rajin
  • Liu, De Li
  • Farquharson, Robert
  • Macadam, Ian
  • Abadi, Amir
  • Finlayson, John
  • Wang, Bin
  • Ramilan, Thiagarajah

Abstract

Shifts in rainfall and rising temperatures due to climate change pose a formidable challenge to the sustainability of broadacre crop yields in Western and South-Eastern Australia. Output from18 Global Climate Models (GCMs) for the Special Report on Emission Scenarios (SRES) A2 scenario was statistically downscaled to four contrasting locations. For the first time in these regions, bias corrected statistically downscaled climate data were employed to drive the Agricultural Production Systems Simulator (APSIM) crop model that integrates the effects of soil, crop phenotype, and management options for a quantitative comparison of crop yields and phenology under an historical and a plausible projected climate. The dynamic APSIM simulation model explore the implications of climate change across multiple locations and multiple time periods (1961–2010, 2030, 2060 and 2090) for multiple key crops (wheat, barley, lupin, canola, field pea) grown in three different types of soil. On average, the ensemble of downscaled GCM projections show a decrease in rainfall in the future at the four locations considered, with increased variability at two locations. At all locations and for five crops, future changes in both crop biomass and grain yield are strongly associated with changes in rainfall (P = 0.05 to P = 0.001). The overall rainfall amount is critical in determining yields but, equally, higher future temperatures can contribute to reducing crop productivity primarily due to advanced crop phenology. For example, for wheat cropping at Hamilton (a higher rainfall site), there is a significant advancement in median flowering date for 2030, 2060, and 2090 of 10, 18, and 29 days respectively with a significant 0.50% grain yield changes for each percentage change in rainfall compared to significant 0.90% grain yield changes in Cunderdin (a lower rainfall site). At all sites except Hamilton, the change in crop grain yield is significantly correlated (P = 0.001) with the percentage change in the future rainfall and the impact increased progressively from higher rainfall to lower rainfall sites. However, the magnitude of the change in crop phenology and yield were not significantly different between soil types. These results help to define regions of concern and their relative importance in the coming years. In this future climate the negative consequences for crop yields and advancement of phenology relative to baseline are not uniform across crops and locations. Of the crops studied – wheat, barley, lupin, canola and field pea – field pea is the most sensitive to the projected future climate changes, and the ensemble median changes in field pea yield range from a decrease of 12% to a decrease of 45%, depending on location. These results highlight the importance of research and policy to support strategies for adapting to climate change, such as advances in agronomy, soil moisture conservation, seasonal climate forecasting and breeding new crop varieties.

Suggested Citation

  • Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
  • Handle: RePEc:eee:agisys:v:132:y:2015:i:c:p:133-144
    DOI: 10.1016/j.agsy.2014.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X14001334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2014.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    2. Rodriguez, Daniel & Cox, Howard & deVoil, Peter & Power, Brendan, 2014. "A participatory whole farm modelling approach to understand impacts and increase preparedness to climate change in Australia," Agricultural Systems, Elsevier, vol. 126(C), pages 50-61.
    3. A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
    4. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447.
    5. Tsubo, M. & Fukai, S. & Tuong, T.P. & Ouk, M., 2007. "A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence," Ecological Modelling, Elsevier, vol. 204(3), pages 503-515.
    6. Ludwig, Fulco & Asseng, Senthold, 2010. "Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates," Agricultural Systems, Elsevier, vol. 103(3), pages 127-136, March.
    7. Fulco Ludwig & Stephen Milroy & Senthold Asseng, 2009. "Impacts of recent climate change on wheat production systems in Western Australia," Climatic Change, Springer, vol. 92(3), pages 495-517, February.
    8. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    9. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    10. Dogliotti, S. & García, M.C. & Peluffo, S. & Dieste, J.P. & Pedemonte, A.J. & Bacigalupe, G.F. & Scarlato, M. & Alliaume, F. & Alvarez, J. & Chiappe, M. & Rossing, W.A.H., 2014. "Co-innovation of family farm systems: A systems approach to sustainable agriculture," Agricultural Systems, Elsevier, vol. 126(C), pages 76-86.
    11. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    12. Toshichika Iizumi & Hirofumi Sakuma & Masayuki Yokozawa & Jing-Jia Luo & Andrew J. Challinor & Molly E. Brown & Gen Sakurai & Toshio Yamagata, 2013. "Prediction of seasonal climate-induced variations in global food production," Nature Climate Change, Nature, vol. 3(10), pages 904-908, October.
    13. Ludwig, Fulco & Asseng, Senthold, 2006. "Climate change impacts on wheat production in a Mediterranean environment in Western Australia," Agricultural Systems, Elsevier, vol. 90(1-3), pages 159-179, October.
    14. De Liu & Heping Zuo, 2012. "Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia," Climatic Change, Springer, vol. 115(3), pages 629-666, December.
    15. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enli Wang & Di He & Jing Wang & Julianne M. Lilley & Brendan Christy & Munir P. Hoffmann & Garry O’Leary & Jerry L. Hatfield & Luigi Ledda & Paola A. Deligios & Brian Grant & Qi Jing & Claas Nendel & , 2022. "How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change?," Climatic Change, Springer, vol. 172(1), pages 1-22, May.
    2. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    3. Jha, Prakash K. & Materia, Stefano & Zizzi, Giovanni & Costa-Saura, Jose Maria & Trabucco, Antonio & Evans, Jason & Bregaglio, Simone, 2021. "Climate change impacts on phenology and yield of hazelnut in Australia," Agricultural Systems, Elsevier, vol. 186(C).
    4. Wang, Bin & Feng, Puyu & Chen, Chao & Liu, De Li & Waters, Cathy & Yu, Qiang, 2019. "Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 170(C), pages 9-18.
    5. Yujie Liu & Weimo Zhou & Quansheng Ge, 2019. "Spatiotemporal changes of rice phenology in China under climate change from 1981 to 2010," Climatic Change, Springer, vol. 157(2), pages 261-277, November.
    6. Yong Li & De Li Liu & Graeme Schwenke & Bin Wang & Ian Macadam & Weijin Wang & Guangdi Li & Ram C Dalal, 2017. "Responses of nitrous oxide emissions from crop rotation systems to four projected future climate change scenarios on a black Vertosol in subtropical Australia," Climatic Change, Springer, vol. 142(3), pages 545-558, June.
    7. Baris Karapinar & Gökhan Özertan, 2020. "Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey," Climatic Change, Springer, vol. 158(3), pages 453-472, February.
    8. Thamo, Tas & Addai, Donkor & Pannell, David J. & Robertson, Michael J. & Thomas, Dean T. & Young, John M., 2017. "Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system," Agricultural Systems, Elsevier, vol. 150(C), pages 99-108.
    9. Bin Wang & De Li Liu & Ian Macadam & Lisa V. Alexander & Gab Abramowitz & Qiang Yu, 2016. "Multi-model ensemble projections of future extreme temperature change using a statistical downscaling method in south eastern Australia," Climatic Change, Springer, vol. 138(1), pages 85-98, September.
    10. Mohammad Torshizi & Richard Gray, 2022. "Adaptability and variety adoption: Implications for plant breeding policy in a changing climate," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 842-859, October.
    11. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.
    12. Muhammad Rizwan Shahid & Abdul Wakeel & Wajid Ishaque & Samia Ali & Kamran Baksh Soomro & Muhammad Awais, 2021. "Optimizing different adaptive strategies by using crop growth modeling under IPCC climate change scenarios for sustainable wheat production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11310-11334, August.
    13. Maruf Rahman Maxim & Kerstin Zander, 2020. "Green Tax Reform and Employment Double Dividend in Australia Should Australia Follow Europe’s Footsteps? A CGE Analysis," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 14(4), pages 454-472, November.
    14. Maruf Rahman Maxim & Kerstin K. Zander, 2020. "Green Tax Reform in Australia in the Presence of Improved Environment-Induced Productivity Gain: Does It Offer Sustainable Recovery from a Post-COVID-19 Recession?," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    15. Feldman, David & Thomas, Quenten & Farre Codina, Imma & Plunkett, Brad & Kingwell, Ross, 2015. "Is a low-input strategy a sound business defence in a drying climate?," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 205077, Australian Agricultural and Resource Economics Society.
    16. Chengfang Huang & Ning Li & Zhengtao Zhang & Yuan Liu & Xi Chen & Fang Wang & Qiong Chen, 2020. "What Is the Consensus from Multiple Conclusions of Future Crop Yield Changes Affected by Climate Change in China?," IJERPH, MDPI, vol. 17(24), pages 1-12, December.
    17. Kingwell, Ross & Thomas, Quenten & Feldman, David & Farre, Imma & Plunkett, Brad, 2018. "Traditional farm expansion versus joint venture remote partnerships," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    2. De Li Liu & Garry J. O’Leary & Brendan Christy & Ian Macadam & Bin Wang & Muhuddin R. Anwar & Anna Weeks, 2017. "Effects of different climate downscaling methods on the assessment of climate change impacts on wheat cropping systems," Climatic Change, Springer, vol. 144(4), pages 687-701, October.
    3. Dengpan Xiao & Huizi Bai & De Li Liu & Jianzhao Tang & Bin Wang & Yanjun Shen & Jiansheng Cao & Puyu Feng, 2022. "Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-21, March.
    4. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    5. A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
    6. Thamo, Tas & Addai, Donkor & Pannell, David J. & Robertson, Michael J. & Thomas, Dean T. & Young, John M., 2017. "Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system," Agricultural Systems, Elsevier, vol. 150(C), pages 99-108.
    7. Kung, Chih-Chun, 2019. "A stochastic evaluation of economic and environmental effects of Taiwan's biofuel development under climate change," Energy, Elsevier, vol. 167(C), pages 1051-1064.
    8. Kabir, Md. Jahangir & Gaydon, Donald S. & Cramb, Rob & Roth, Christian H., 2018. "Bio-economic evaluation of cropping systems for saline coastal Bangladesh: I. Biophysical simulation in historical and future environments," Agricultural Systems, Elsevier, vol. 162(C), pages 107-122.
    9. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Waters, Cathy, 2020. "Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain," Agricultural Systems, Elsevier, vol. 181(C).
    10. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    11. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    12. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    13. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    14. Yong Li & De Li Liu & Graeme Schwenke & Bin Wang & Ian Macadam & Weijin Wang & Guangdi Li & Ram C Dalal, 2017. "Responses of nitrous oxide emissions from crop rotation systems to four projected future climate change scenarios on a black Vertosol in subtropical Australia," Climatic Change, Springer, vol. 142(3), pages 545-558, June.
    15. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    16. James Watson & Andrew Challinor & Thomas Fricker & Christopher Ferro, 2015. "Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model," Climatic Change, Springer, vol. 132(1), pages 93-109, September.
    17. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2020. "Accounting for diverse risk attitudes in measures of risk perceptions: A case study of climate change risk for small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 95(C).
    18. Asseng, S. & Dray, A. & Perez, P. & Su, X., 2010. "Rainfall–human–spatial interactions in a salinity-prone agricultural region of the Western Australian wheat-belt," Ecological Modelling, Elsevier, vol. 221(5), pages 812-824.
    19. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.
    20. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:132:y:2015:i:c:p:133-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.